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Abstract of Praxis 

A Predictive Analytical Model for Predicting Munitions Surface Clearance 

Decontamination Activities 

 

 

Unexploded ordnance contamination in the United States and its Territories has 

emerged as one of the nation's most significant environmental problems in 2001 and 

remains a serious environmental concern today. The locations, quantities, depths, and 

types of munitions remaining and areal extent of contamination at former live-fire 

training sites are currently unknown and unaccounted for.  Site decontamination cleanup 

often takes longer to complete, necessitates more regulatory attention, and requires 

significantly more financial investment than anticipated. 

The objective of this praxis was to develop a predictive analytics model using 

multiple regression techniques as a tool for project managers, program managers, field 

supervisors, and decision makers engaged in munitions response action planning, 

estimating, and field operations.  The application to assist project and program managers 

in predicting munitions surface clearance rates for the clearance and decontamination of 

munitions items and munitions-related debris is aimed to support pre-bid decision making 

in acquisition opportunities, resource and operations planning, and management of 

ongoing field operations for surface decontamination activities.  A forecasting tool will 

provide for additional risk management oversight to help minimize estimating and 

operational risks.  The model examines the munitions response predictor variables that 

are significant or not significant in predicting the weekly number of surface acres 

decontaminated of munitions and munitions-related contamination.  Model fitting 
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procedures converged upon a final model able to be used to predict surface acre 

clearance.     



www.manaraa.com

 ix 

Table of Contents 

 

 

Dedication .......................................................................................................................... iv 

Acknowledgments............................................................................................................... v 

Abstract of Praxis .............................................................................................................. vii 

List of Figures .................................................................................................................. xiv 

List of Tables ................................................................................................................... xvi 

Glossary of Acronyms .................................................................................................... xvii 

Chapter 1: Introduction ....................................................................................................... 1 

1.1   Background ........................................................................................................... 2 

1.2   Purpose and Incentive of Research ....................................................................... 8 

1.3   Problem Statement ................................................................................................ 9 

1.4   Thesis Statement ................................................................................................. 10 

1.5   Research Questions ............................................................................................. 10 

1.6   Hypotheses .......................................................................................................... 11 

1.6.1   Hypotheses for Research Question 1 ......................................................... 11 

1.7   Research .............................................................................................................. 12 

1.8   Summary of Praxis Organization ........................................................................ 13 

Chapter 2: Literature Review ............................................................................................ 15 

2.1   Introduction ......................................................................................................... 15 

2.2   Historical Overview of Munitions Response Program ....................................... 15 

2.3   Public Health and Environmental Importance for Cleaning up UXO ................ 18 

2.4  DoD Environmental Liability .............................................................................. 23 

2.5   Acquisition Issues in the Munitions Response Program..................................... 26 



www.manaraa.com

 x 

2.6   Munitions Response Action Process ................................................................... 28 

2.7   Investigation Phase of the CERCLA Process ..................................................... 30 

2.7.1   Preliminary Assessment/Site Inspection Phase (PA/SI) ............................ 30 

2.7.2   Remediation and Cleanup Phase of the CERCLA Process ....................... 32 

2.7.2.1   Remedial Design (RD) and Remedial Action-Construction (RAC).. 32 

2.7.2.2   Remedial Action Operation and Long-Term Management............... 33 

2.8   Removal Actions - The Munitions Response Action Phase ............................... 33 

2.8.1   Removal Action (RA) ................................................................................ 33 

2.9   Overview of Industry Tools for Current Estimating Techniques ....................... 37 

2.10   Overview of Multiple Regression Techniques for Predicting Munitions 

Response Actions ........................................................................................................ 39 

2.10.1   Statistical Learning Explained ................................................................. 39 

2.10.2   History of Linear Regression ................................................................... 41 

2.10.3   Parametric vs. Non-Parametric Methods ................................................. 42 

2.10.4   Estimating Regression Coefficients ......................................................... 43 

2.10.4.1   Assumptions About the Functional Form of the Model ................. 44 

2.10.4.2   Assumptions About the Residuals .................................................. 45 

2.10.4.3   Assumptions About the Predictors.................................................. 45 

2.10.4.4   Assumptions About the Observations ............................................. 47 

2.11   Primer on Inference Modeling and Predictive Modeling ................................. 47 

2.12   Tradeoff of Model Interpretability and Model Flexibility ................................ 48 

2.13   Framework for Measuring Error ....................................................................... 50 

2.13.1   Indirect Estimate of Test Error ................................................................ 50 



www.manaraa.com

 xi 

2.13.2   Direct Estimate of Test Error ................................................................... 53 

2.13.3   Choosing the Right Error Metric to Assess Predictive Power ................. 56 

2.15   Knowledge Gaps in Literature Review ............................................................. 58 

Chapter 3: Methods ........................................................................................................... 61 

3.1   Data Identification and Collection ...................................................................... 63 

3.2   Data Analysis Procedures ................................................................................... 72 

3.2.1   Variable Identification ............................................................................... 73 

3.2.2   Descriptive Statistics .................................................................................. 75 

3.2.3   Bivariate Analysis ...................................................................................... 75 

3.2.4   Potential Outlier Detection and Exploration .............................................. 77 

3.2.5   Missing Values and Data ........................................................................... 77 

3.2.6   Pre-Processing............................................................................................ 77 

3.3   Model Building ................................................................................................... 78 

3.3.1   Modeling Procedure ................................................................................... 79 

3.3.2   Model Validation ....................................................................................... 81 

3.3.3   Checking the Linearity and Homoscedasticity Assumption ...................... 82 

3.3.4   Checking Independence of the Error Terms .............................................. 82 

3.3.5   Checking for Normality Distributed Error Terms ..................................... 83 

3.3.6   Multicollinearity Analysis ......................................................................... 83 

3.3.7   Outliers, Influential Points, and High Leverage Points ............................. 84 

3.3.8   Hypothesis Testing of the Candidate Models ............................................ 84 

3.4   Model Evaluation and Model Selection .............................................................. 85 

3.4.1   Evaluating the Candidate Models .............................................................. 85 



www.manaraa.com

 xii 

3.4.2   Final Words on Model Selection ............................................................... 86 

3.5   Summary ............................................................................................................. 86 

Chapter 4: Results ............................................................................................................. 87 

4.1   Part 1: Exploratory Data Analysis ...................................................................... 87 

4.1.1   Missing Values........................................................................................... 87 

4.1.2   Descriptive Statistics .................................................................................. 87 

4.1.3   Univariate Plots and Distributions ............................................................. 88 

4.1.4   Bivariate Plots and Distributions ............................................................... 93 

4.1.5   Preprocessing - Binning of Predictors x10 and x9..................................... 98 

4.2   Part 2: Model Selection and Validation .............................................................. 99 

4.2.1 Assumption Testing and Residual Analysis .............................................. 102 

4.2.2   Model Fit .................................................................................................. 108 

4.3   Part 3: Analysis of The Final Model ................................................................. 110 

4.4   Part 4: Results Summary ................................................................................... 112 

Chapter 5: Discussion and Conclusions .......................................................................... 113 

5.1   Introduction ....................................................................................................... 113 

5.2   Research Question 1 ......................................................................................... 118 

5.3   Research Question 2 ......................................................................................... 121 

5.4   Hypothesis......................................................................................................... 122 

5.5.  Implications....................................................................................................... 122 

5.6   Limitations of the Research .............................................................................. 123 

5.7   Practical Application of the Predictive Model .................................................. 125 

References ....................................................................................................................... 129 



www.manaraa.com

 xiii 

Appendix A –  Histograms of All the Univariate Distributions for Continuous     

Variables  ........................................................................................................................ 135 

Appendix B –  Scatterplot Matrix of all Predictor Variables.......................................... 136 

Appendix C –  Scatter Plots for All Predictor Response Variable Pairs ........................ 137 

Appendix D –  List of Independent and Dependent Variables ....................................... 139 

Appendix E –   Example of Compilation of Data Variables ........................................... 140 

Appendix F –  Simple Linear Regressions for All Predictor Response Variable Pairs .. 141 

Appendix G –  Pearson and Spearman Pairwise Correlations for All Predictor      

Variables ......................................................................................................................... 143 

Appendix H –  Pearson and Spearman Correlations for All Predictor Response     

Variable Pairs .................................................................................................................. 144 

Appendix I –  Boxplots of All Continuous Variables Segmented by Site ID................. 145 

Appendix J –  SAS Subsets Selection Top 10 Optimized for Adjusted R-Squared ....... 146 

Appendix K –  SAS Model Summary for Top Model in Best Subsets Selection         

Output ............................................................................................................................. 147 

Appendix L –  Intellectus Model Summary Top Model in Best Subsets Selection     

Output ............................................................................................................................. 148 

Appendix M –  SAS Model Summary for Final Model.................................................. 149 

Appendix N –  Intellectus Model Summary for Final Model ......................................... 150 

Appendix O –  SAS Model Summary for Model with Full Set Predictor Variables ...... 151 

Appendix P –  Intellectus Model Summary for Model with All Predictor Variables .... 152 

 

  



www.manaraa.com

 xiv 

List of Figures  

 
 

Figure 1.1. Inert MK Series Bombs collected from the surface area of an impact range. ...4 

Figure 1.2. Munitions related debris cleared and collected from the surface area of an 

impact range. ............................................................................................................4 

Figure 2.1. Fatalities at national parks between the years 2005 and 2014……………….19 

Figure 2.2. Children mishandling UXO. ............................................................................20 

Figure 2.3. Children playing around UXO Bombs. ...........................................................21 

Figure 2.4. Munitions response site process through CERCLA phases and milestones. ..28 

Figure 2.5. Example of site where a large scale TCRA munitions surface clearance      

was initiated based on the threat due to the presence of MEC and MPPEH          

on the land surface. ................................................................................................35 

Figure 2.6. Photograph of inert munitions items removed and collected from the surface       

during TCRA. ..........................................................................................................36 

Figure 2.7. Flexibility vs Interpretability tradeoff. ............................................................48  

Figure 2.8. Example of k-fold cross validation iterations. .................................................53 

Figure 3.1.  Graphical Representation of Methodology Approach . ..................................65  

Figure 3.2. Sample Map of a Munitions Response Area divided into Munitions 

            Response Sites …………………………………………………………..………67 

Figure 3.3.  Consolidation of UXO Items and Preparation of Explosive Demolition…...68 

Figure 3.4.  Flowchart showing iterative regression analysis process  ..............................80 

Figure 4.1. Frequency of records belonging to site. ..........................................................89 

Figure 4.2. Boxplots of all rescaled (standardized) continuous predictors. .......................91 

Figure 4.3. Boxplots of all the continuous variables in original units segmented by  



www.manaraa.com

 xv 

 Site ID……………………………………………………………………………92 

Figure 4.4. Boxplots of the response variable in aggregate and segmented by Site ID. ....93 

Figure 4.5.  Boxplots of response variable by slope and vegetation density. ....................94 

Figure 4.6.  Pearson correlations of the predictor variables with heatmap. .......................95 

Figure 4.7a. Simple linear regression for predictor X1, X2, X3, and X4 with response 

variable. ..................................................................................................................96 

Figure 4.7b. Simple linear regression for predictor X5, X6, and X7 with response 

variable…………………………………………………………………………...97 

Figure 4.7c. Simple Linear regression for predictor X8, X9, X10, X11, X12, and X13 

with response variable……………………………………………………………98 

Figure 4.8. Original distribution (left) and distribution after Binning (right). ...................99 

Figure 4.9. Original distribution (left) and distribution after Binning (right). .................100 

Figure 4.10. Histogram and normal probability plot of the residuals. .............................104 

Figure 4.11. Residuals vs Predicted (Fitted) Values Plot & 4-18-2 Observed vs Fitted 

Values. .................................................................................................................105 

Figure 4.12.  Index plot of standardized residuals. ..........................................................106 

Figure 4.13. Outlier and leverage diagnostics for response Variable Y. .........................108 

Figure 4.14. Cook’s distance for response Variable Y, number and rate of surface 

             acres cleared. ...................................................................................................... 108 

 

 

  



www.manaraa.com

 xvi 

List of Tables  

 
 

Table 1.1.  Predictor Variable Identification and Definition…………………………….12 

Table 2.1. Overall Actual Fiscal Year MMRP Funding (Rounded in Million Dollars) ....24 

Table 3.1. Preliminary Research Screening Matrix for Dependent and Independent 

Variables ................................................................................................................72 

Table 3.2. Identification of Dependent and Independent Variables for Surface  

             Clearance Activities ..............................................................................................74 

Table 4.1. Descriptive Statistics for the Continuous Predictors Segmented by Site ID ....90 

Table 4.2. Frequency Table After Binning ......................................................................100 

Table 4.3. Top 3 Candidate Models Chosen by Best Subsets Selection..........................101 

Table 4.4. SAS Output Bartlett’s Test on Model Residuals ............................................104 

Table 4.5. Final Model VIF Scores ..................................................................................107 

Table 4.6. Performance Metrics for Final Model ............................................................109 

Table 4.7. Standardized Coefficient Estimates ................................................................112 

Table 4.8. Results of Final Model ....................................................................................112 

 

 

  



www.manaraa.com

 xvii 

Glossary of Acronyms 

 
 

AAR    After Action Report 

AIC   Akaike Information Criterion 

AOC  Area of Concern 

AR  Administrative Records 

ARAR  Applicable or Relevant and Appropriate Requirement 

AQ  Acquisition 

ATG  Air-to-Ground 

ASN I&E Office of Assistant Secretary of the Navy (Installations and Environment) 

AT&L  Office of the Under Secretary of Defense (Acquisition, Technology 

ASR  Archive Search Reports 

BIC  Bayes Information Criterion 

BIP  Blow in Place 

BRAC  Base Realignment and Closure 

CAP  Corrective Action Plan 

CERCLA   Comprehensive Environmental Response Compensation and Liability Act 

CPEO  Center for Public Environmental Oversight 

CTC   Cost to Complete 

CTO  Contract Task Order 

CQC  Contractor Quality Control 

CWM  Chemical Warfare Material 

DDESB Department of Defense Explosives Safety Board 

DEP  Department of Environmental Protection 



www.manaraa.com

 xviii 

DEQ  Department of Environmental Quality 

DERP  Defense Environmental Restoration Program 

DFAR  Defense Federal Acquisition Regulations 

DGM  Digital Geophysical Mapping 

DMM  Discarded Military Munitions 

DoD  Department of Defense 

DOI  Department of Interior 

DON  Department of the Navy 

DQO  Data Quality Objective 

EBS  Environmental Baseline Survey 

EE/CA  Engineering Evaluation/Cost Analysis 

EHE  Explosive Hazard Evaluation 

EM  Electromagnetic 

EMM  Earth Moving Machinery 

EOD  Explosive Ordnance Disposal 

EPA  U.S. Environmental Protection Agency 

EPCRA Emergency Planning and Community Right-to-Know Act 

ERA  Expanded Range Assessment 

ERB  Environmental Restoration and BRAC 

ER,N  Environmental Restoration, Navy 

ESS  Explosives Safety Submission 

ESTCP Environmental Security Technology Certification Program 

EZ  Exclusion Zone 



www.manaraa.com

 xix 

FAR  Federal Acquisition Regulations 

FFA  Federal Facility Agreement 

FS  Feasibility Study 

FUDS   Formerly Used Defense Site 

FY  Fiscal Year 

GAO  Governmental Accounting Office 

GIS  Geographic Information System 

HE   High Explosive 

IR  Installation Restoration 

IRA  Interim Remedial Action 

IRP  Installation Restoration Program 

ITRC  Interstate Technology Regulatory Cooperation 

LTM  Long Term Monitoring 

LTMgt  Long Term Management 

LTO  Long Term Operation 

LUC  Land Use Control 

MEC  Munitions and Explosives of Concern 

 



www.manaraa.com

1 

 

Chapter 1: Introduction 

 

Unexploded Ordnance (UXO) contamination in the United States and its 

territories emerged as one of the nation's most significant environmental problems more 

than three decades ago. The number of former defense sites across the United States 

requiring the cleanup of UXO and the cost to complete the cleanup of these sites 

continues to grow. There has been almost a 300% increase in the number of sites added 

to the Military Munitions Site Inventory since 2002 (DoD, 2015). Although the 

Department of Defense (DoD) has made progress in cleaning up 61% of the UXO sites 

through various munitions response actions over the last 15 years, the cost of cleanup 

remains relatively the same as when the program started in 2002 (DoD, 2015).   

The DoD’s Annual Report to Congress states that changes in DoD scope, changes 

in cost estimating methodologies, the discovery of further contamination, changes in 

contract scope, and expansion of decontamination activities account for a 59% increase in 

cleanup costs for environmental and munitions response sites (MRSs) (DoD, 2015).  The 

uncertainty of DoD changes in scope, land use, and areal extent of contamination not 

only increases the financial and operational risks to the contract service provider tasked 

with cleaning up the site, but it also continues to put human health and the environment at 

risk when site decontamination efforts are delayed or not achieved.  As discussed in 

Chapter 5, these concerns drive the need for researching a solution that can assist 

munitions response project managers, program managers, and decision-makers in 

predicting munitions surface clearance rates of munitions items and munitions-related 

debris to help support pre-bid decision making for acquisition opportunities, resource and 
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operational planning, and management of on-going field operations for surface 

decontamination activities.   

1.1   Background 

U.S. military downsizing and the closure and transfer of military facilities to non-

DoD ownership over the last four decades has resulted in the closure of hundreds of 

defense sites, military bases, military training ranges, weapons research centers, and 

testing facilities (DSB, 2003). Thousands of sites located on these former military-owned 

facilities are known or suspected to contain UXO.  UXO poses serious safety risks, and 

many sites are still unsafe and unsuitable for most kinds of public, commercial, 

agricultural, or private land use without significant DoD resources and capital investment 

in restoring these lands to within acceptable human health risk hazards (DoD, 2006; 

Siegel, 2004. The Defense Science Board reported that more than two million rounds of 

ordnance were typically fired annually as part of live-fire training exercises on active 

operational ranges located across the nation (DSB, 2003).  Although UXO contamination 

emerged as one of the nation's most significant environmental concerns close to three 

decades ago, it continues today to be one of the nation’s leading environmental issues 

along with emerging contaminants (Siegel, 2004).     

Unique and special risks associated with properties contaminated with 

munitions and explosives of concern (MEC), discarded military munitions 

(DMM), and munitions constituents (MC) present many complex challenges both 

to the DoD and participating stakeholders.  Depending on the areal extent of 

contamination, the processes for restoring these former defense sites follows a 

lengthy and rigorous environmental restoration process that includes:  (a) 
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preliminary site assessments (PA), (b) site investigations (SI), (c) remedial 

investigations and feasibility studies (RI/FS), (d) remedial and/or removal actions 

(RA), (e) long-term operations and management (LTO/LTM), and (f) site 

closeout (SC). Unless there is an early decision on a site to recommend No 

Further Action (NFA), the performance of all these phases is necessary before the 

DoD can affirm that the site poses no unacceptable risk and can close it out of the 

inventory as Response Complete (RC) (DoN ERP, 2018).  The process follows 

the requirements of the Comprehensive Environmental Regulations and 

Compensation Liability Act (CERCLA) and the Resource Conservation Recovery 

Act (RCRA).  

Interim Removal Actions (IRA), such as surface clearance of UXO, can be 

implemented as an accelerated or emergency cleanup action as part of the restoration 

process.  The IRA is a response action tool used during the investigation phases to 

mitigate risk and exposure to the public by removing and disposing of UXO items from 

the surface and or subsurface.  Examples of UXO include an array of high explosive 

bombs, submunitions, grenades, projectiles, mortars, bomb fuses, and rockets.  Figure 1.1 

shows an example of inert Mk Series practice bombs cleared and collected from the 

surface area of an impact range within the boundaries of a munitions response site during 

a Time Critical Removal Action (TCRA).   
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Figure 1.1 Inert MK Series Bombs collected from the surface area of an impact range; Source 

U.S. Navy 

 

Figure 1.2 below provides an example of munitions-related debris cleared and 

collected from the surface of an impact range during a TCRA.  The munitions-related 

debris removed within the munitions response site during the TCRA includes: range  

 

 

Figure 1.2.  Munitions related debris cleared and collected from the surface area of an impact 

range. Source: U.S. Navy 
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related debris, targets, scrap metal, and cultural debris.  The material is cleared from the 

surface and stockpiled within the munitions response site for collection, demilitarization, 

and removal and disposal.  

Restoring the land free of UXO is not only a costly and time-consuming process 

but also problematic due to the complexity of the UXO remediation process.  Previous 

research indicates the process of cleaning up Munitions Response Sites may be quite 

antagonistic because of contrary opinions on cleanup standards between the regulatory 

community, the DoD, citizen groups, landowners, and land users (MacDonald, 2005).  

Stakeholder concerns and the uncertainty of quantifying the location and amount of 

UXO, makes it difficult to estimate the costs of clearing the surface and subsurface land 

area of UXO items (RAND, 2005).  No accepted standard exists for the restoring lands 

free of UXO. The cleanup of UXO sites is unique and unlike the traditional cleanup of 

environmentally hazardous waste sites where standard acceptable limits for cleanup have 

already been established.  Each site is unique and requires an agreed upon site-specific 

approach between the DoD and the stakeholders to reach an agreed-upon risk-based 

cleanup standard (e.g., surface clearance, subsurface clearance).  For example, some 

stakeholders may want all the land cleared of UXO (e.g., surface, and subsurface 

clearance) to a depth of several feet below the surface, while other stakeholders may want 

to clear UXO from only the surface area to achieve immediate risk reduction until 

additional funding or risk scenarios change.  The costs and time for clearing UXO from 

the surface only is the least costly alternative and could result in being 30 times less than 

the costliest alternative of clearing both the surface and subsurface of UXO to a depth of 

four feet below surface elevation.  
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The DoD sets an aggressive policy across each of the Military Service 

Components to implement Performance-Based Service Acquisitions for environmental 

and munitions response cleanups (PBSA) (OFPP, 2003).  The Federal Procurement 

Policy challenges munitions response service firms to meet performance objectives or 

achieve results that may not be reasonably attainable for service-related contracts in the 

performance of decontamination efforts required for the cleanup of complex 

environmental and munitions response sites.  Many of the munitions response sites have 

limited historical information on the amount and location of where UXO may be present 

and little or no information on the extent of surface and subsurface contamination.  The 

DoD reported that the locations, quantities, depths, and types of munitions remaining and 

areal extent of contamination at these former military ranges are unknown and 

unaccounted for (DSB, 2003).  Not knowing the areal extent of contamination becomes 

problematic and increases the financial risk when predicting the cost for site cleanup of 

large munitions response sites where thousands of acres contain Munitions and 

Explosives of Concern (MEC), Discarded Military Munitions (DMM) and Munitions 

Constituents (MC).  PBSA-type contracts place the burden and financial risks on 

contractors to achieve a performance-based outcome that may be unrealistic to achieve 

within financial reason due to lack of pertinent historical site data, known levels of UXO 

contamination, and limited geophysical detection technologies.  The uncertainty of DoD 

changes in scope, land use, and areal extent of contamination not only increases the 

financial and operational risks to the contract service provider but also continues to put 

human health and the environment at risk when the outcomes of site decontamination 

efforts are delayed or not achievable.   
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These uncertainties due to unforeseen levels of contamination further increase 

financial risks to firms performing decontamination activities under Firm Fixed Price 

Performance-Based Contracts being awarded based on lowest price.  While one of the 

objectives of PBSA’s is to save the DoD money, it may not be possible on service-type 

contracts where the government traditionally awarded and selected service-type 

contracting firms by “best value” technical approaches rather than “lowest price” (OFPP, 

2003).   

While the DoD continues to make progress in achieving Response Complete at 

UXO and hazardous waste sites, other factors continue to impact the progress in 

achieving Response Complete for the remaining sites on the Military Munitions Site 

Inventory.  The DoD (2015) reported that 56% of the 5,230 Munitions Response Sites 

currently listed in the Military Munitions Site Inventory achieved Response Complete 

status in 2015.  However, project scope changes and changes in cost estimates accounted 

for a 68% increase in environmental site decontamination cost estimates over prior year 

estimates (DoD, 2015).  The DoD further reports that uncertainties in decontamination 

scope criteria accounted for changes in scope and accounted for 40% increase in site 

cleanup costs.  Examples of changes in scope include adding cleanup phases, newly 

discovered contamination, increases in site dimensional area, changes in land re-use, 

additional risk pathways, additional site characterization, and additional remedial action 

operations (DoD, 2015).  Changes in cost estimates unrelated to scope changes accounted 

for a 19% increase in clean-up costs compared to previous cost-estimating models.  

Whereas, changes in cost estimates unrelated to scope changes included changes in DoD 

cost estimating methodologies, changes in contract or contract methods, stakeholder 
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delays, and estimates where actual contract costs for prior or ongoing work exceeded 

prior cost estimates and anticipated schedule durations (DoD, 2015).   

1.2   Purpose and Incentive of Research 

The DoD’s remaining sites scheduled for decontamination present more complex 

challenges than in the past.  The DoD anticipates the cleanup of remaining sites will take 

longer to complete and necessitate more regulatory attention resulting in increased 

financial investments (DoD, 2015).  Scope growth and changes in cost estimates pose 

greater financial risks to both industry and government. These factors suggest that the 

DoD’s aggressive policy on using PBSA-type service contracts may not be appropriate 

for performing munitions response decontamination activities at sites with limited 

historical information and site data. These concerns drive the interest and need for further 

research in exploring a practical solution that can assist project and program managers in 

promptly predicting preliminary baseline estimates of operational resources required for 

munitions surface clearance activities on a per acre basis during the bid/no bid process for 

munitions response type acquisition opportunities. The proposed forecasting 

methodology is a tool for decision makers that can assist them in predicting clearance 

activities to help support pre-bid detailed cost estimating, operational planning, and 

model on-going field surface decontamination operations to predict clearance rates ensure 

compliance with cost and schedule durations are achieved.  A more detailed practical 

application is provided in Chapter 5.  

The purpose of this research is to examine the relationship and influence of 

factors (independent and dependent variables) that predict the surface clearance acres 

cleared of munitions and non-munitions related debris at munitions response sites based 
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on production data, labor resources, site physical properties, amount of munitions 

contamination, and vegetation removal.  The application of multiple regression 

techniques is used to examine the relationship between the variables.  Although treating 

munitions constituents and clearing subsurface land of munitions and munitions-related 

debris are typically part of the Comprehensive Environmental Response and Liability Act 

(CERCLA) process, they are not part of this exploratory research due to the additional 

complexity and need for additional variables unique to those activities.  The development 

of a forecasting technique will have various practical applications in the Munitions 

Response Industry, such as assisting project and program managers in evaluating the field 

level operational performance capabilities for munitions clearance activities while 

performing their initial screening and risk decision-making process when deciding on 

pursuing or not pursuing certain risk-based acquisitions (e.g., lowest price PBSA-type 

munition response action contracts).  Many of the acquisition opportunities have limited 

site characterization data, limited knowledge of contamination levels, and limited 

historical information on the past use of the site.  Data from actual DoD munitions 

surface clearance activities were collected and used for building the multiple regression 

model.  The following sections address the research problem beginning with the Problem 

Statement and ending with the proposed Research Methodology.        

1.3   Problem Statement 

Changes in DoD project scopes due to expansion of clean up area and discovery 

of additional contamination result in greater financial risks to firms performing Firm 

Fixed Price decontamination activities.  
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The Problem Statement focuses on Surface Clearance Decontamination Projects 

associated with Munitions Response Actions involving the Cleanup of Unexploded 

Ordnance, Discarded Military Munitions, and Non-Munitions Related Debris that follow 

the Environmental Clean Up requirements under the U.S. Environmental Protection 

Agency [EPA] Regulated CERCLA and RCRA Process.  The uncertainties in the areal 

extent of surface site contamination, unknown quantities of contamination, the discovery 

of additional contamination, and unforeseen costs lead to the need of this study.  

Therefore, the proposed study is designed to develop a predictive analytical model to 

aide in predicting the surface clearance rate based on the level of labor resources, 

performance requirements,  contamination levels, and physical site characteristics to 

minimize financial risks while minimizing risks to human health and the environment. 

1.4   Thesis Statement 

Because the areal extent of munitions contamination at munitions response sites is 

rarely known at the time of procurement actions or when changes in scope are issued, a 

predictive analytics model to forecast surface clearance rates will improve risk 

management decisions for firms making decisions on  bid/no bid acquisition 

opportunities and decisions for cost/resource estimating when changes in scope occur 

during on-going surface clearance field operations.  

1.5   Research Questions  

Research Question 1: Will the implementation of a predictive analytics 

model assist in identifying the critical independent variables influencing the site 

munitions clearance and decontamination efforts?   
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Sub-questions:  

o Which predictor (independent) variables are significant and insignificant in 

predicting the number of surface acres decontaminated of munitions and 

munitions related contamination? 

Research Question 2: Will the use of predictive analytics model support the 

prediction of estimating the number of acres cleared of munitions and munitions related 

contamination based on the independent variables selected for the munitions response 

decontamination activity? 

Sub-questions:  

o Are the independent variables selected able to predict the surface 

clearance rate for decontamination activities? 

o Which independent variables provide a better model in predicting the 

response variable (e.g., the number of weekly surface acres cleared)? 

1.6   Hypotheses 

1.6.1   Hypotheses for Research Question 1 

Ho:  Predictor (independent) variables X₁…. X₁₃, do not significantly predict the response 

(dependent) variable, Y, (Total number of surface acres cleared per week). 

Ha:  At least one predictor (independent) variable, X₁…. X₁₃, significantly predicts the 

response (dependent) variable, Y, (Total number of surface acres cleared per week) 

A summary of the predictor (independent) variables X₁ through X₁₃ are listed and 

defined in Table 1.1 below and Appendix D.   
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Table 1.1.  Predictor Variable Identification and Definition 

 
Predictor 

Variable ID 
Definition of Predictor Variables 

X₁ 

 

Total weekly number of days worked by UXO Field Technicians. 

X₂ Total number of weekly hours worked by UXO Field Technicians performing all 

related surface clearance activities 

X₃ Total number of actual weekly hours worked by UXO Field Technicians 

performing surface clearance activities within the grid ( does not include travel time 

and other non-grid work time). 

X₄ Total number of UXO Technicians performing all surface clearance activities. 

X₅ Total number of weekly work days worked by Vegetation Removal Technicians 

 

X₆ Total number of vegetation removal technicians performing vegetation removal 

activities ahead of surface clearance activities. 

 

X₇ Total number of weekly hours worked by vegetation removal technicians 

X₈ Total number of actual weekly hours of vegetation removal technicians performing 

vegetation removal activities within the grid (does not include travel time and other 

non-grid work time) 

X₉ Total weekly estimated number of individual UXO items, range related debris, 

material potentially presenting an explosive hazard, and munitions debris cleared 

from the surface. 

X₁₀  Total weight of non-munitions debris, metal scrap, targets, and cultural debris 

cleared from the surface. 

X₁₁ Average estimated slope of topography within sites completed on weekly basis. 

X₁₂  Average percentage of vegetation and tree canopy density within site area worked 

on weekly basis. 

X₁₃  Number of vegetation acres cleared per week within site area proceeding surface 

clearance activities. 

 

1.7   Research  

The objective of this study is to develop a predictive analytics model as a tool for 

project managers, program managers, field supervisors, and decision-makers engaged in 

munitions response action planning, estimating, and field operations.  The overall 

purpose of the model is to be able to assist munitions response in predicting munitions 

surface clearance rates to help support pre-bid decision making in acquisition 

opportunities, resource, and operational planning, and management of on-going field 
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operations for surface decontamination activities to mitigate public health and 

environmental risks.  The model examines the munitions response predictor variables that 

are significant or not significant in predicting the weekly number of surface acres 

decontaminated of munitions and munitions-related contamination based.  The 

effectiveness of the model is based on the statistical relationship of predictor variables 

and response variable commonly used in the measurement of   field operations for 

munitions response clearance activities.  The variables are categorized by:  (1) number 

and type of labor resources, (2) operational time in the field, (3) quantity of munitions 

and munitions-related contamination cleared, (4) physical site characteristics, and           

(5) density and amount of vegetation clearance.  It is anticipated that the forecasting 

model will provide the foundation to explore further applications for subsequent phases 

of munitions decontamination activities, such as, digital geophysical detection operations, 

subsurface clearance operations, and underwater clearance activities.  Additional 

discussions on the practical application is provided in Chapter 5. 

1.8   Summary of Praxis Organization 

This Praxis is divided into five chapters.  Chapter One presents an overview of the 

research problem, the background of the research problem, purpose and incentive of the 

research, the problem statement, hypotheses, research questions, and the research 

objectives.  A discussion of relevant literature is provided in Chapter Two.  The overall 

research methodology is presented and discussed in Chapter Three.  Analysis of the data 

and results are presented in Chapter Four.  Chapter Five provides the discussions of the 

results, conclusion, and recommendations for further study.  The appendices provide 

information related to the research and include a bibliography, data summary, results of 
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the regression analysis, graphs and charts, and other pertinent information related to 

supporting the research, data analysis, and discussions presented in the research study. 
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Chapter 2: Literature Review 

 

2.1   Introduction 

Chapter 2 provides a review of the literature search as it relates to the problem 

under study for this research.  This chapter is divided into seven major sections and 

subsections that logically organize the literature research for review.  The major sections 

include: (a) a historical overview of the munitions response program, (b) public health 

and environmental importance for the cleanup of UXO, (c) DoD’s environmental 

liabilities, (d) acquisition issues in the munitions response program, (e) munitions 

response action process, (f) overview of multiple regression as a forecasting tool, and  

(g) knowledge gaps in literature review.  

2.2   Historical Overview of Munitions Response Program 

Former military ranges and Formerly Used Defense Sites (FUDS) contaminated 

with unexploded ordnance (UXO) pose a severe problem in both the United States and 

abroad.  Today's munitions-related contamination concern in terms of impacted acreage, 

environmental liability, and the imminent danger to human health and environment 

emerged into one of the nation's leading environmental issues1 (GAO, 2003).  The 

cleanup of these former defense sites poses a multi-billion dollar environmental liability 

for the DoD and presents severe risks to the communities who live, work, and recreate on 

                                                 

1 For purposes of this paper the term munitions contamination or munitions-related contamination refers to either one or mix of any of 

the three categories of munitions-related contaminates:  munitions and explosives of concern (MEC), discarded military munitions 

(DMM), and munitions constituents (MC).  Munitions contamination refers to land or waterways containing a mix of UXO/MEC, 

DMM, and MC.  
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or near former defense sites that are no longer under the ownership or security of the 

military (GAO, 2003; Siegel, 2004).  Over the last century, reports indicate that DoD 

utilized over 15 million acres of land and unaccountable millions more of waterways 

across the nation and its' territories for munitions-related activities for military training 

and testing of weapons in order train with live munitions and sustain the military’s 

readiness2.  Decades of military downsizing initiatives have led to the closure and transfer 

of over 3,600 former defense sites to other federal, state, local, and tribal governments, 

commercial, or private entities.  These defense sites are known or suspected to contain 

unknown amounts of munitions and explosives of concern (MEC) discarded military 

munitions (DMM), and munitions constituents (MC) (GAO, 2003)3. 

The cost to assess and remediate UXO is uncertain because of the lack of 

information on the number of sites and the many unknown factors associated with each 

site.  Estimates in 2003 suggest that there were more than 2,300 UXO sites in the United 

States involving anywhere between 10 million and 15 million acres of land (DSB UXO, 

2003).  Recent estimates from DoD state that there are now over 5200 munitions 

response sites listed on the Munitions response Site Inventory (DoD, 2015).  Preliminary 

                                                 

2 For purposes of this paper the term munitions-related activities refer to any DoD activities on former military ranges or former 

defense sites that involved the past use of munitions (e.g.,  military live fire training, testing, munitions storage, etc.), that resulted in 

the presence of unexploded ordnance (UXO), munitions and explosives of concern (MEC), discarded military munitions (DMM), 

and/or munitions constituents (MC) . 

3 For purposes of this paper the term UXO is used interchangeably with MEC. The terms UXO and MEC refer to armed military 

munitions that were fired and failed to detonate on impact with the surface land or targets; DMM refers to excess or expired military 

ordnance improperly disposed of on-site; MC refers to munitions chemicals released into the environment through either detonation, 

burning, or decaying munitions.   
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cost estimates suggest that the remedy cost is in the tens of billions of dollars and remains 

relatively the same two decades later.   

In response to Public Law 107-107, the Department of Defense (DoD) established 

the Military Munitions Response Program (MMRP) in 2001 (DoD, 2002).  The MMRP 

addresses the munitions-related contamination and cleanup at Formerly Used Defense 

Sites (FUDS), facilities closed and transferred under the Base Realignment and Closure 

(BRAC) Act, and closed ranges on active military facilities. As with DoD’s 

environmental cleanup program, DoD complies with environmental cleanup laws, such as 

the Comprehensive Environmental Response, Compensation, and Liability Act 

(CERCLA) and the Resource Conservation and Recovery Act (RCRA) for the 

investigation and cleanup of sites.  DoD established and initiated the Munitions Response 

Site Inventory program, the development of a Site Prioritization Protocol, and 

advancement of UXO detection and remediation technologies.  Since then, the range 

inventory program continues to identify munitions response sites (MRSs) for inclusion to 

the site inventory program for prioritization and funding for munitions response cleanup 

actions.   MRSs are sites that are known or suspected to contain UXO, DMM, or MC.  

DoD’s Munitions Response Site Prioritization Protocol was finalized in 2005 and is used 

to prioritize funding for sites where the scores warrant a munitions response action based 

on a hazardous ranking score.  On the technology front, a significant amount of funding 

continues for investing in the development of advanced geophysical detection and 

discrimination technologies for both subsurface and underwater UXO through DoD's 

Strategic Environmental Research and Development Program (SERDP) and 

Environmental Security Technology Certification Program (ESTCP).  The objective is to 
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develop technologies that can detect and discriminate hazardous UXO or MEC items 

from non-hazardous scrap metal or cultural debris that will result in less intrusive 

subsurface excavation digs and reduce the costs of subsurface clearance by 40% to 50% 

(SERDP, 2014).  SERDP and ESTCP respond directly to DoD’s top environmental 

requirements generated by each military service component. 

2.3   Public Health and Environmental Importance for Cleaning up UXO  

Former defense sites are no longer in use for their intended purpose nor under the 

ownership and security of military enforcement.  Because of their explosive and chemical 

hazards, former military properties containing munitions contamination remain a 

significant threat to communities and regions where it is suspected or known (Siegel, 

2004).   Serious injury or even death may occur to those who handle or encounter 

unexploded ordnance ( (Siegel, 2004).  Increased public and political concern over the 

uncertainty of risk associated with the use of live munitions and the ordnance remaining 

on site is a primary environmental concern to the United States Environmental Protection 

Agency (U.S. EPA), Natural Resource managers, landowners, and other stakeholders as 

well.  The release of munitions constituents into the environmental media is now 

suspected as a significant source for environmental contamination (i.e., soil, groundwater, 

and surface water) and natural resource damage (U.S. EPA, 2012). Human exposure to 

munitions constituents through contact with environmental media may potentially result 

in adverse human health effects.  For example, manufactured forms of ammonium 

perchlorate have been released into the environment and found in soils, groundwater, and 

drinking water supplies near sites engaged in the use, testing, and disposal of 

ammunition, missile launches, manufacturing and use of rocket fuel.  Perchlorate is a 
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toxic contaminate regularly used in munitions, rocket propellants, signal flares and 

fireworks (US EPA, 2017). Perchlorate affects the thyroid glands and enters the 

bloodstream through food ingestion and intake of potable well water (ATSDR, 2008).  

The impacts of perchlorate to human health caused U.S. Environmental Protection 

Agency (U.S. EPA) to act by issuing Interim Drinking Water Health Advisories (US 

EPA, 2017).  The release of perchlorate into the environment usually happens because of 

failed rocket launches, accidental releases, or mishandling and disposal of rockets and 

missiles (ATSDR, 2008).  Excessive levels of perchlorate contamination in soil and 

groundwater were detected at numerous rocket manufacturing facilities and military 

training facilities in the past (ATSDR, 2008).   

The extent of harm to the public as it relates to human contact and exposure to 

UXO is higher in areas where wars occurred or at former defense site where decades of 

live fire military training occurred.  A study conducted by the EPA reported that human 

exposure to UXO resulted in 65 fatalities and 131 injuries in the U.S. between 1918 and 

2001 (US EPA, 2001).  Human contact with UXO accounts for 1.27 civilian fatalities per 

decade.  The study also reported that a total of 126 civilian UXO incidents occurred and 

at least 83 of these incidents resulted in explosions (US EPA, 2001).  Although the 

number of UXO related fatalities are extremely low in the U.S., any such event draws 

negative publicity to the party responsible for the cause of death, in this case, DoD. 

The average number of civilian fatalities or injuries caused by contact with UXO 

within the U.S. is significantly low as compared to other sources for civilian deaths such 

as drownings and motor vehicle accidents.  For example, The Washington Post reported 

that out of the 280 million people who visit U.S. National Parks each year, there are 
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between 120 to 140 civilian fatalities that occur each year at U.S. National Parks. Table 

2.1 provides the number of fatalities that have occurred at National Parks between the 

period of 2005 and 2014.  Excluding civilian suicides, approximately 1,271 civilian 

deaths occurred at national parks within the nine-year period (Ingraham, 2015). 

Drownings, vehicle accidents, and falls were the top three causes of death at national 

parks between 2003 and 2007 (Ingraham, 2015).   

 

   
 
Figure 2.1. Fatalities at National Parks Between the Years 2005 and 2014 

Note. Source: Wonkbog, Washington Post  (Ingraham, 2015) 

UXO incidents among the civilian population abroad are significantly more 

frequent in war-torn countries than in the United States and are a significant public health 

concern (Morikawa, Taylor, & Persons, 1998).  Many of these foreign countries, such as 

Vietnam, Laos, Afghanistan, and Iraq, suffered through decades of air to ground  
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bombings, ship to shore artillery, and ground to ground shelling.  For example, reports 

indicate that Laos, per capita, is the most heavily bombed area in history (Vientiane 

Times Editor, 2016).  A study performed by the Mines Advisory Group (MAG) in Laos 

twenty-two years after the Vietnam War ended reported that on average, there is one 

injury every other day and that half of the injuries and deaths related to UXO incidents 

involved children under the age of 15 years old (Morikawa et al., 1998).  The photograph 

in Figure 2.2 shows two boys playing with and mishandling UXO projectiles in 

Afghanistan that could likely result in a detonation causing severe injury or death. 

 

 

Figure 2.2. Children mishandling UXO. Source:  UXOINFO.com. 
 

The study also concluded that the fatality rate is high, and males were more likely 

to die of UXO injuries than females.  In any case, almost all injuries were considered 

very serious requiring highly specialized medical and surgical services (Vientiane Times 

Editor, 2016).  There were over 50,000 civilians killed or injured in Laos since 1964.   
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A photograph presented in Figure 2.3 below shows a family playing and walking around 

UXO littered and stockpiled on the land surface in Laos.  Human Exposure to UXO is a 

common and daily event for many children and families living in Laos.  

 

 

Figure 2.3. Children playing around UXO Bombs. Source:  UXOINFO.com. 
 

International organizations working closely with the NRA cleared over 1,782,682 

cluster munitions, 7,529 large bombs, 7,154 land mines and over 900,000 other devices 

from 59,816 hectares of land between 1996 and 2015 (Vientiane Times Editor, 2016).  

The UXO problem in war torn countries is massive as compared to the United States.  

Nonetheless, UXO is a serious and deadly threat to civilians who come into contact or 

handle UXO that needs to be mitigated.  Not only is there a concern for protecting public 

health and the environment, the presence of UXO also hinders the economic growth and 
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development of lands for agriculture, forestry, hydro-electric power, transportation, 

residential development, and a host of other economic development initiatives (Vientiane 

Times Editor, 2016) .  The clearing and decontamination of UXO from land continues to 

be of paramount importance for protecting the public, environment, and enhancing 

economic development of nearby communities within the United States and abroad. 

2.4  DoD Environmental Liability 

For the last 20 years, the federal government's environmental liability continues to 

grow as does DoD's environmental liability. Environmental liability is defined as an 

economic risk expressed in financial terms and exists if there are a likelihood and 

measurable outflow of future resources because of past practices or events (DoD, 2006).  

The cleanup costs at contaminated sites where federal activities contaminated the 

environment are the responsibility of the federal government and reported as a financial 

liability (GAO, 2017).  The federal government’s liability has more than doubled over the 

last 20 years growing from $212 billion in 1997 to $447 billion in 2017 and will likely to 

continue to grow (GAO, 2017).  DoD's total environmental and disposal liability for 2014 

and 2015 was reported at $58.6 billion and $60 billion, respectively, while DoD's 

environmental restoration liability alone is $27.2 billion (U.S. Treasury, 2015).   

Cost-effective solutions for reducing public health and safety risks is hampered 

because of the absence of complete information of the cleanup requirements and 

unreliable methods of making environmental cleanup decisions (GAO, 2017).  When 

costs to contain the contamination is unknown or where there is no known technology 

available to clean up a site, then the federal agency accountable for the cleanup is 

responsible for estimating the costs to conduct actions (i.e., RI/FS’s, RA’s, etc.) under the 
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Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) 

as liabilities (GAO, 2017).  Consequently, the estimated liabilities to clean up 

environmental and munitions sites remain uncertain and likely underestimated (GAO, 

2003).  

In regards to the DoD liabilities specific to the Military Munitions Response 

Program (MMRP), the  Government Accounting Office (GAO) reported that the 

magnitude of risks and the extent of liabilities associated with the UXO problem is 

uncertain and that DoD does not have a complete and viable plan for cleaning up sites 

contaminated with munitions (GAO, 2003).  The DoD estimates that there are between 

ten and fifteen million acres of land potentially contaminated with Munitions and 

Explosives of Concern (MEC), discarded military munitions (DMM), and munitions 

constituents (MC).  The costs and liabilities of cleanup as well as the potential harm to 

the public and the environment are still yet to be fully defined. The DoD reported its 

unexploded ordnance cleanup liability to be anywhere between $14 billion and $140 

billion (GAO, 2003).  The estimated costs to address risks from MEC, DMM, and MC at 

operational ranges were estimated to cost between $16 billion and $165 billion.  Whereas 

the estimated costs to address risks at Munitions Response Sites (MRSs) (other than 

operational ranges) was estimated to cost anywhere between $8 billion and $35 billion 

(DoD, 2002).  In 2009, the DoD reported the estimated Cost to Complete (CTC) for the 

MMRP at $12.2 billion (DoD, 2009).  Table 2.2 summarizes the actual annual funding 

for the Military Munitions Response Program (MMRP) over a ten-year period between 

2005 and 20015.  The DoD has funded a total of $3.5 billion over the ten-year period, and 

the estimated cost to complete the UXO cleanup remains relatively the same today at 
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$11.2 billion as it did almost fifteen years ago (DoD, 2015).  As presented in Table 2.1, 

the DoD's average funding for the MMRP cleanup program is approximately $340 

million per year.  Based on the annual average rate of funding for the MMRP, it is likely 

that it may take another 30 years or more to clean up former defense sites to achieve 

acceptable human health risk levels.   

 

Table 1.1.  Overall Actual Fiscal Year MMRP Funding (Rounded in Millions of Dollars) 

 
Summary of Actual Fiscal Year MMRP Funding for Active Installations, FUDS 

Properties, and BRAC Locations (Millions of Dollars) 

FY05 FY06 FY07 FY08 FY09 FY10 FY11 FY12 FY13 FY14 FY15 

$186 $211 $278 $348 $420 $420 $437 $385 $341 $385 $420 

 Source:  Defense Environmental Funding FY 2009 and FY 2014 Annual Report to Congress. 

 

Like the DoD's Environmental Restoration Clean Up Program (DERP), the DoD's 

MMRP was developed to address the contamination and remediation of MEC, DMM, 

and MC remaining on former DoD defense sites, FUDS, and BRAC Sites (DoD, 2002).  

The number of sites listed in the Military Munitions Site Inventory grew from 1754 sites 

in 2001 to 5230 sites in 2015 (DoD, 2015).  As additional sites keep being added to the to 

the clean-up program, the cost to clean up these sites continues to increase and remains 

uncertain.  The DoD reported that 61% of sites have been remediated to acceptable 

standards and classified as either Remedy in Place (RIP) or Response Complete (RC) 

(DoD, 2015).  However, the inclusion of additional sites to the site inventory causes a 

cost growth to the program and continues to impact the time and cost to complete the 

cleanup of Munitions Response Sites (DoD, 2015).   
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2.5   Acquisition Issues in the Munitions Response Program 

The DoD sets an aggressive policy across each of the Military Service 

Components to implement Performance-Based Service Acquisitions (PBSA) (OFPP, 

2003).  The Federal Procurement Policy challenges munitions response service firms to 

meet performance objectives or achieve results that may not be reasonably attainable for 

service-related contracts in the performance of decontamination efforts required for the 

cleanup of complex environmental and munitions response sites.  Many of the munitions 

response sites have limited historical information on the amount and location of where 

UXO may be present and little or no information on the extent of surface and subsurface 

contamination.  The DoD reported that the locations, quantities, depths, and types of 

munitions remaining and areal extent of contamination at former military ranges are 

unknown and not accounted for (DSB, 2003).  Not knowing the areal extent of 

contamination becomes problematic and increases the financial risk when predicting the 

cost for site cleanup of large munitions response sites where thousands of acres are 

contaminated with MEC, DMM, and MC.  PBSA-type contracts place the burden and 

financial risks on contractors to achieve a performance-based outcome that may be 

unrealistic to achieve within financial reason due to lack of pertinent historical site data, 

known levels of UXO contamination, and limited geophysical detection technologies.  

The uncertainty of DoD changes in scope, land use, and areal extent of contamination not 

only increases the financial and operational risks to the contract service provider but also 

continues to put human health and the environment at risk when the outcomes of site 

decontamination efforts are delayed or unachievable.   
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These uncertainties due to unforeseen levels of contamination further increase 

financial risks to firms performing decontamination activities under Firm Fixed Price 

Performance-Based Contracts awarded based on lowest price.  While one of the 

objectives of PBSA’s is to save the DoD money, it may not be possible on service-type 

contracts where the government traditionally awarded and selected service-type 

contracting firms by “best value” technical approaches rather than “lowest price” (OFPP, 

2003).   

While the DoD continues to make progress in achieving Response Complete at 

UXO and hazardous waste sites, other factors continue to impact the progress in 

achieving Response Complete for the remaining sites on the Military Munitions Site 

Inventory.  The DoD reported that 56% of the 5,230 Munitions Response Sites currently 

listed in the Military Munitions Site Inventory achieved Response Complete status in 

2015.  However, project scope changes and changes in cost estimates accounted for a 

68% increase in environmental site decontamination cost estimates over prior year 

estimates (DoD, DoD Environmental Restoration Program FY 2014 Annual Report to 

Congress, 2015).  The DoD further reports that uncertainties in decontamination scope 

criteria accounted for changes in scope and accounts for 40% increase in site cleanup 

costs.  Examples of changes in scope include adding cleanup phases, newly discovered 

contamination, increases in site dimensional area, changes in land re-use, additional risk 

pathways, additional site characterization, and additional remedial action operations 

(DoD, DoD Environmental Restoration Program FY 2014 Annual Report to Congress, 

2015).  Changes in cost estimates unrelated to scope changes accounted for a 19% 

increase in clean-up costs compared to previous cost-estimating models.  Changes in cost 
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estimates unrelated to scope changes included changes in DoD cost estimating 

methodologies, changes in contract or contract methods, stakeholder delays, and 

estimates where actual contract costs for prior or ongoing work exceeded prior cost 

estimates and anticipated schedule durations (DoD, 2015).   

The DoD’s remaining sites scheduled for decontamination present more complex 

challenges. The DoD anticipates the cleanup of remaining sites will take longer to 

complete and necessitate more regulatory attention resulting in increased financial 

investments (DoD, 2015).  Scope growth and changes in cost estimates pose greater 

financial risks to both industry and government. These factors suggest that the DoD’s 

aggressive policy on using PBSA-type service contracts may not be appropriate for 

performing munitions response decontamination activities at sites with limited historical 

information, site data, and unknown areal extent of contamination. 

2.6   Munitions Response Action Process 

DoD follows the CERCLA, Superfund Appropriations and Recovery Act 

(SARA), Resource Conservation and Recovery Act (RCRA), and Applicable Relevant 

and Appropriate Regulation (ARAR) process for cleaning up both environmental and 

munitions response sites.  The cleanup process at large sites with thousands of acres like 

the cleanup at Ft. Ord California and the Former Atlantic Fleet Weapons Training 

Facility on Vieques Island, Puerto Rico can take decades to complete.  Figure 2.3 

presents a flow chart of the overall CERCLA process for cleaning up environmental and 

munitions response sites within the United States.  Although the environmental and 

munitions response program follows the CERCLA process, there is a distinct difference.  

The environmental program is concerned with the protection of human health and the 
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environment based on short and long-term exposures in the event of releases of 

hazardous wastes and substances whereas the munitions response program is concerned 

primarily with the acute risks of human exposure caused by explosive detonations. This 

section briefly discusses the phases and processes of the munitions response program as 

described in Figure 2.4 to provide the reader with an understanding of the Investigation 

and Remediation Cleanup phases of the CERCLA process and how certain munitions 

response actions, such as removal actions and remedial action, are initiated to protect the 

public and environment.   

 

 

Figure 2.4. Munitions Response Site Process through CERCLA Phases and Milestones  

Source: FY15 DoD’s Annual Report to Congress. 
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2.7   Investigation Phase of the CERCLA Process4 

2.7.1   Preliminary Assessment/Site Inspection Phase (PA/SI)  

The first phase under the Investigation Phase of the CERLCA Process is the 

Preliminary Assessment/Site Inspection Phase (PA/SI) phase.  The PA/SI under the 

Munition Response Program serves the same purpose as the SI for an environmental 

investigation in the CERCLA process (DoN ERP, 2018).  After new sites have been 

identified in the Munitions Response Site Inventory list, a PA is initiated to identify 

potentially contaminated sites at a military installation or former defense site to determine 

if a hazardous waste or substance has been released into the environment or confirm the 

presence or non-presence of MEC, DMM, or MC.  PA's typically include the reviewing 

all pertinent historical documents, collect and review data, conduct on-site 

reconnaissance if required, conduct interviews, and determine if a release or the potential 

presence of MEC, DMM, or MC requires further investigations in the SI phase.  If the 

data screening results indicate that no unacceptable risk exists, then the site can be 

recommended for No Further Action (NFA), closed out, and removed from the site 

inventory.  If the data screening results or site reconnaissance identified the presence of 

MEC, DMM, or MC, a Site Investigation is initiated to determine the initial extent of 

contamination and hazards associated with the munitions contamination. 

                                                 

4 The description of the investigative and remediation cleanup phases follows the CERCLA process and are 

summarized based on the phases presented in the 2018 Department of Navy’s Environmental Restoration 

Program Manual.  
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The purpose of an SI is to conduct a limited site investigation to gather additional 

sampling data and conduct a metal detector-aided survey to determine the presence of 

MEC, DMM, and MC on the site.  SI’s typically include information on the type of MEC 

found, quantities on the surface, vegetation density, topography, range scrap quantities, 

geology, and evidence of impact areas.  The results of the SI assist the decision makers in 

determining if, (1) no further action is required, (2) a full scale Remedial Investigation is 

required to investigate the explosives hazards  and extent of MEC, DMM, MC 

contamination, or (3) a Time Critical Removal Action (TCRA) or Non-Time Critical 

Removal Action (NTCRA)  is needed to reduce the immediate threat to the public and the 

environment (DoN ERP, 2018).  Vegetation clearance and limited surface and subsurface 

clearance of munitions items and munitions-related contamination are conducted during 

the SI phase to reduce the potential risk and hazards to the field crew performing the 

investigation during the site characterization efforts. 

Remedial Investigation/Feasibility Study (RI/FS):  As in the case of the PA/SI, 

the Remedial Investigation and Feasibility Study (RI/FS) for a munitions response action 

serve the same purpose as an RI/FS for an environmental investigation under the 

CERCLA process.  The key difference between an environmental RI/FS and a munitions 

response RI/FS is that a detailed geophysical investigation is required for a munitions 

response RI to delineate the extent of munitions and munitions-related contamination 

both in the surface and subsurface land area.  The objective of the RI/FS is to: (1) 

characterize the site and  determine the nature and areal extent of munitions-related 

contamination, (2) assess the risks and explosive hazards to the public and environment, 

(3) assess the potential fate and transport of  munitions-related contamination, (4) 
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conduct pilot tests of viable munitions response technologies, and (5) perform an 

evaluation of remedial alternatives and cost estimates for the subsequent Remedial 

Design and Remedial Action phases (DoN ERP, 2018).  Vegetation clearance and limited 

surface or subsurface clearance of munitions items and munitions-related contamination 

are conducted during the RI phase to reduce the risk and hazards to the field crew 

performing site characterization efforts. 

2.7.2   Remediation and Cleanup Phase of the CERCLA Process 

2.7.2.1   Remedial Design (RD) and Remedial Action-Construction (RA-C) 

The Remedial Design (RD) phase under the Remediation Cleanup Phase involves 

the development of the detailed cost estimates and the preparation of the detailed design 

of the Remedial Action-Construction (RA-C) remedy selected in the Record of Decision 

(ROD) for remediating the munitions and munitions-related contamination (DoN ERP, 

2018). Depending on the remedial action objectives and future land use, the remedy may 

include vegetation removal, surface clearance of munitions and range related debris, 

digital geophysical mapping (DGM) of subsurface anomalies, subsurface clearance of 

anomalies identified in the DGM, demolition of munitions, and range scrap removal and 

disposal.   

The RD phase is not widely implemented in the munitions response program, if at 

all.  It is one of the most important phases for defining the scope of work required for the 

cleanup.  The RD enables a more accurate prediction of the extent of contamination, 

delineation of vegetation removal, delineation of surface clearance and subsurface 

clearance, and the quantities of munitions and munitions-related debris to be encountered.  

A RD would provide for less uncertainty as it relates to the scope of work and to the 
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amount of work expected during the performance of the clean-up contract resulting in a 

more accurate cost predictions and schedule duration for clean-up.   

2.7.2.2   Remedial Action Operation and Long-Term Management  

This phase involves the operation, maintenance, and monitoring actions for the 

remedial action systems completed during the Remedial Action.  Munitions response 

actions typically do not have any treatment systems constructed as in the case for 

remediating groundwater at environmental sites.  The Remedial Action Operation and 

Long-Term Management (RA-O/LTM) for munitions response actions include the 

implementation, management, and maintenance of Land Use Controls after the 

completion of the remedial action (DoN ERP, 2018) 

2.8   Removal Actions - The Munitions Response Action Phase 

2.8.1   Removal Action (RA) 

Removal Actions are conducted in either the investigation or remediation and 

cleanup phases under CERCLA.  The National Oil and Hazardous Substances Pollution 

Contingency Plan (NCP) allows for the implementation of a munitions removal action to 

be conducted in an accelerated manner in circumstances where a rapid munitions removal 

action is required to minimize risk to the public and environment (DoN ERP, 2018).  

CERLCA Section 104 further warrants that whenever a threat of a release or actual 

release of a hazardous waste substance or contaminant, such as a munitions item, removal 

actions and succeeding remedial actions should be initiated to mitigate the substantial 

danger to the public health (DoN ERP, 2018).  There are three types of removal actions 

and each have a distinct difference as described below (U.S. EPA, 1992):    
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a. Emergency Removal Actions (ERA):  An ERA is implemented when a  

 release or contaminate needs to be addressed immediately (within hours 

or days) to be protective of the public health.  Regarding the munitions 

program, a surface clearance or subsurface removal of individual 

munitions items may be needed to address the immediate risks posed by 

the munition items.   

b. Time Critical Removal Actions (TCRA):  TCRAs are initiated when the 

threat is not immediate but considered imminent where the 

implementation of the action can begin within 6 months.  TCRA’s are 

typically considered an interim action until a final remedy can be selected 

through the CERCLA process.  However, TCRA’s can be final remedial 

actions if the threat is contained or removed.  TCRA’s are applied to 

small-scale or large-scale actions.  TCRA’s are implemented when the 

presence of MEC is known or suspected at a site.  TCRA’s are used at a 

large site when a large-scale surface clearance is needed as an interim or 

final action to reduce the immediate risk of MEC exposure to public 

health.  

c. Non-Time Critical Removal Action (NTCRA):  NTCRA serves the 

same purpose as a TCRA except for the planning period and initiation of 

implementation is 6 months or longer.  NTCRA’s are initiated when 

determined to be appropriate and can be applied to small scale and/ or 

large- scale actions.  NTCRA’s are implemented when the presence of 

MEC is known or suspected at a site.  As in the case of TCRA’s, 
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NTCRA’s are used at a large site when a large-scale surface or subsurface 

clearance is needed as an interim or final action to reduce the immediate 

risk of MEC exposure to public health.  

As discussed above, removal actions can be initiated as either an interim action or 

final action.  Removal actions are initiated based on the type of situation, urgency of the 

threat of release or exposure to contaminants, and subsequent period of the initiation of 

the removal action (U.S. EPA, 1992). 

Depending on the objective of the munitions response action, actual field 

decontamination activities may vary for each type of munitions response action.  It 

should be noted that most activities, at a minimum, involve some type of vegetation 

removal to gain access to assess surface contamination and surface clearance of 

contamination to minimize risk of exposure to munitions items laying on the surface.  

Besides reducing the immediate risk, vegetation removal and surface clearance activities 

are also conducted for preparation of the area for subsequent actions such as digital 

geophysical mapping and subsurface clearance activities. 

Figure 2.5 below provides an example of where a large scale TCRA was initiated 

due to the presence of MEC and MPPEH.  A large-scale surface clearance involves 

vegetation removal, if required, surface clearance of munitions and munitions related 

debris, demolition of live munitions, range clearance, processing and disposal of all 

range, related debris, munitions documented as safe for disposal, and scrap metal.   
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Figure 2.5. Example of site where a large scale TCRA munitions surface clearance was  

based initiated on the threat due to the presence of MEC and MPPEH on the land surface. 

 

Figure 2.6 below provides an example of the amount of inert munitions and range 

related debris removed and collected from the surface within the munitions response site 

during the implementation of a TCRA.  The inert munitions items will be demilitarized, 

and the remaining range related scrap is certified free of explosives and sent to a scrap 

metal facility for further processing and recycling.  Surface and Subsurface Clearance of 

munitions and related munitions activities can be performed at any time during the 

investigation and remediation and clean up phases as described in CERCLA process 

shown in Figure 2.4.  A munitions-related surface and subsurface clearance  
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 Figure 2.6. Photograph of inert munitions items removed and collected from the surface       

during TCRA.  

Source: US Navy 
 

TCRA or NTCRA may involve vegetation removal, surface clearance of munitions and 

other related and non-related debris, demolition of munitions items, digital geophysical 

mapping, subsurface clearance of anomalies, collection, and disposal of munitions-related 

and non-related debris. 

2.9   Overview of Industry Tools for Current Estimating Techniques 

Since the mid-nineties, GAO has gone on record and developed at least 28 

recommendations related to addressing the federal government's environmental liability. 

Thirteen of these recommendations remain unimplemented. GAO reports that if 

implemented, these recommendations would improve the inclusiveness and dependability 
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of the estimated costs of future cleanup and lead to a more effective and efficient risk-

based approach of the cleanup work (GAO, 2017). 

Estimating the cost of UXO cleanups is a unique challenge due to the 

uncertainties and complexity of each site. Unlike typical construction and environmental 

restoration cost estimating tools, UXO cost estimating tools are insufficient.  Since the 

inception of the military munitions program, the DoD has been utilizing Remedial Action 

Cost Engineering Requirements (RACER) as the model for estimating UXO cleanups.  

RACER, proprietary software was developed in 1996 by the US Air Force for estimating 

site remediation costs for DoD's hazardous and toxic and radiological waste sites 

(HTRW).  Due to the lack of consistent and uniform UXO cost estimating tools within 

the industry, RACER was later modified to include UXO cost estimating modules.  

Researchers from the RAND Corporation explored the capabilities of RACER for a 

massive 7000-acre UXO site to do a cost analysis.  Recommendations of the study 

indicated that the DoD's cost-estimation process for developing effective plans and cost 

estimates for UXO cleanup needs to improve by developing a uniform cost-estimating 

strategy, collaborating with industry to improve RACER's UXO cleanup estimating 

capabilities, along with calibrating and validating the RACER model (RAND, 2005). 

Besides RACER, there is no consistent and improved cost-estimating tool for UXO 

Cleanup.  Most estimating tools are developed internally within the organization engaged 

in the munitions response program.  
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2.10   Overview of Multiple Regression Techniques for Predicting Munitions 

Response Actions 

This section focuses on exploring the literature search for techniques for 

developing a forecasting tool to predict the surface clearance of munitions based on 

certain predictor variables that were found common in the data collection of surface 

clearance operations.   

2.10.1   Statistical Learning Explained 

Statistical Learning is focused on supervised and unsupervised modeling and 

prediction (Hastie, 2013).  A set of input variables known as predictor variables are 

predetermined and have some impact on a set of output variables known as response 

variables.   Modeling the underlying relationship between the predictor variables X and 

the response variable Y is known as supervised learning, a critical aspect of Statistical 

Learning (Hastie, 2013).  Whereas Supervised learning models the relationship between 

the predictors and the response variable, another concept of statistical learning theory 

known as unsupervised learning is concerned with learning structure and finding patterns 

in data without using the response variable Y. In the statistical learning framework, a set 

of different approaches are used to estimate a function f, which represents the systematic 

information that the predictor variable inputs X provide about the response variable Y. 

Since the true function f is unknown, it must be estimated, and the approximation is 

denoted as �̂� (Hastie, 2013). 

It is understood that there is some unknown relationship between a quantitative 

response variable Y and a set of predictors 𝑿 = (𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒, . . . 𝑿𝒑).  The goal of 

statistical learning is to model that relationship. The true relationship is defined by the 
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unknown function f.  Since it is unknown, a function approximation �̂� is created to model 

the relationship between X and Y.   

In statistical learning literature, there are many different methods and models used 

to estimate f.  Models will range in complexity and require a thoughtful understanding to 

distinguish the best way to estimate the unknown population function f.  A discussion on 

some of the reasons as to why the population function f would want to be estimated are as 

follows (𝑓 is the estimation of 𝑓):  

1. Prediction: In this setting, the goal is to predict future values of the response 

variable given an observation of predictor variable inputs.  We are often not 

typically concerned with the exact form of �̂� if it yields accurate predictions 

for Y.  There are two errors to be concerned with for the prediction accuracy 

of  �̂�,  reducible and irreducible error  (James, Witten, Hastie, & Tibshirani, 

2013).  A reducible error is systematic variation in the response variable 

measured by our estimated function �̂�. The reducible error represents a 

deterministic aspect of the modeling of the predictors (X) to the response 

variable (Y) and can be potentially improved when improving �̂�. The 

irreducible error refers to the random variation in the response variable that 

we cannot model and therefore, cannot use them for its prediction capabilities 

(James et al., 2013). 

2. Inference:  In this setting, the true underlying function f is estimated. 

However, the primary goal is to understand the relationship and clarify the 

nature of this complex interaction.  The model needs to be able to discriminate 

which predictor variables are significant with the response variable as well as 
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provide information on the relationship between the predictor variable and 

response variable by its magnitude and direction, and lastly, the model should 

be able to explain the relationship between the variables using a linear 

equation (James et al., 2013).  A model with the least amount of predictor 

variables representing the most important part of the variation in the response 

variable is desired (Chatterjee & Hadi, 2012).  

Residuals are the difference between the original and generated outputs, also 

known as errors (Hastie, 2013). The goal is that the artificial outputs produced by �̂�, our 

estimate of f, are close enough. When the residuals are small, our estimated model �̂� is 

close to the underlying population function f, and thus our artificial outputs will be useful 

enough for all set of inputs likely to be encountered in real-world applications or practice 

(Hastie, 2013).  For models such as linear regression, close is measured via Residual Sum 

of Squares (RSS), which is the sum of all the squared errors.  

2.10.2   History of Linear Regression 

For the past thirty or more years, linear models have been used extensively and 

have been the backbone of statistics (Hastie, 2013).  Linear regression is a useful and 

widely used tool for predicting values of a quantitative response variable.  Linear 

regression is an example of a parametric approach because it assumes a linear functional 

form for f (Hastie, 2013).  Simple Linear Regression (SLR) uses a single predictor 

variable, and Multiple Linear Regression (MLR) uses multiple predictor variables. The 

rest of the section focuses on multiple linear regression since explaining a complex 

process or predicting an output accurately involves utilizing more than one predictor 
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variable. Given a vector of predictor variable inputs we can predict the response variable 

using a linear function of the parameters (Chatterjee & Hadi, 2012):  

    𝑌�̂� = 𝐵0̂ + ∑ 𝑋𝑖𝑗𝐵�̂�
𝑝
𝑗=1  

  

A model is fitted to the data using the Least Squares method. Model fitting is 

parameter estimation, and least squares are not the only method of estimation. Linear 

models such as linear regression offer interpretability advantages for inference modeling 

over other more flexible parametric and non-parametric models. Linear regression and 

other linear models also offer extremely competitive predictive performance for real-

world problems when the underlying population relationship between the predictors and 

the response variable is linear, making them popular choices for many real-world 

applications (Chatterjee & Hadi, 2012).  In summary, linear regression will outperform 

other models both in interpretability and most other models in predictive ability when the 

true form of f is linear, (i.e., when  𝑓(𝑋) ≈  𝑓(𝑋)) (Chatterjee & Hadi, 2012).  

2.10.3   Parametric vs. Non-Parametric Methods 

Parametric methods assume about the functional form of the true underlying 

relationship f.  A procedure is used to estimate the population parameters, B. These 

estimates are the model coefficients �̂�. The parametric approach reduces the problem of 

estimating f down to that of specifying a functional form (i.e., class of functions) of the 

underlying relationship between X and Y, and then estimating the set “parameters” of that 

function. A linear model is a parametric model in which the assumed functional form that 

relates the predictors to the response variable is LINEAR (James et al., 2013). The 

classic example is the linear regression: 
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   𝑓(𝑋) = 𝐵0 +  𝐵1 𝑋1 + 𝐵2𝑋2 + ⋯ . +𝐵𝑝𝑋𝑝  

  Most naturally occurring processes in social science and engineering are not 

entirely linear. If we specify a functional form that is far from the true underlying 

population function, f, then our estimated model will perform poorly on new data, and 

any inferences drawn from the estimated parameters are likely to be inaccurate. However, 

if this is not the case, and the true underlying function that relates the predictor variables 

to the response variable is indeed linear or close to linear, then the estimated model will 

be well suited for both the tasks of prediction and inference (James et al., 2013).  

 The other class of methods is Non-Parametric. These methods do not make 

explicit assumptions about the functional form of the true underlying population model f. 

Instead they seek to estimate the population model which gets as close to the data points 

as possible. Non-parametric methods have a few significant advantages over parametric 

methods in that they avoid the assumption of a specified functional form of the 

population model that is being estimated, and they have the potential to fit a broader 

range of possible shapes and relationships. While the significant advantage of non-

parametric methods is their lack of assumptions about the functional form of the 

population model and process under study, their main disadvantage lies in their increased 

complexity and scope and the large number of observations required to avoid overfitting 

and getting an accurate estimate for f” (James et al., 2013).  

2.10.4   Estimating Regression Coefficients 

 Linear Regression is a parametric method, so the process of function 

approximation has been reduced to specifying a functional form and then parameter 

estimation for that function. The true population regression coefficients are unknown and 
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must be estimated. Least Squares is a method for estimating parameters which minimize 

the sum of squared residuals, also known as the residual sum of squared errors (RSS) 

(Chatterjee & Hadi, 2012)   

   𝑅𝑆𝑆 =  ∑ (𝑦𝑖 − �̂�𝑖
𝑛
𝑖=1 )2 

                                       =  ∑ (𝑦𝑖 − 𝐵�̂� − 𝐵1̂𝑥𝑖1 − 𝐵2̂𝑥𝑖2−. . . − 𝐵�̂�𝑥𝑖𝑝)
2

 𝑛
𝑖=1    

As mentioned previously, the parameters �̂�, estimated from the least squares 

fitting of the data, are approximations of the true population coefficients β. These least 

squares estimated coefficients are the values that minimize the residual sum of squared 

errors (RSS). �̂�0 represents the intercept, and �̂�𝑗 represents the estimated regression 

coefficient for predictor variable 𝑋𝑗.  

  A practical interpretation of a regression coefficient depends on whether the 

predictor variable is continuous or categorical. Accuracy and reliability of the coefficient 

interpretation depend on whether the regression model is valid based on its restrictive 

assumptions, whether collinearity exists between the predictor variables, whether we 

reject or fail to reject the null hypothesis of the model based on the F-Test, and whether 

the coefficient is significant or not based on the t-Test.  Since Linear Regression is a 

parametric method, it makes certain assumptions, which are described below in the 

following section.   

2.10.4.1   Assumptions About the Functional Form of the Model 

1. Linearity assumption: The underlying population model that relates the 

response Y to the predictor variables X is assumed to be linear in the 

regression parameters (Chatterjee & Hadi, 2012) 

Y = B0 + 𝐵1𝑋1 + 𝐵2𝑋2+. . +𝐵𝑝𝑋𝑝 + 𝜀 
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2. Additive assumption: According to the functional form of the model, a one 

unit increase in 𝑋𝑗 results in an average of �̂�𝑗 unit increase in the response 

variable Y when all other predictor variables are held constant (Chatterjee & 

Hadi, 2012). If �̂�𝑗  is negative, then the one unit increase in 𝑋𝑗 corresponds to a 

�̂�𝑗 unit decrease in the response variable Y.  

2.10.4.2   Assumptions About the Residuals  

1. Normally distributed: The residuals are assumed to follow a normal 

distribution with a mean of zero, and an unknown variance parameter. The 

mathematical notation is below.   

  𝜖 ~ 𝑁(0 , 𝜎2)    ,where 𝜖 represents the residuals (error terms) 

2. Homoscedasticity: The residuals are assumed to have constant variance. When 

the assumption is violated, the residuals are said to exhibit heteroscedasticity. 

Essentially when there is heteroscedasticity of the residuals instead of the 

variance being some unknown constant, 𝜎2, the variance of the residuals 

changes as a function of the inputs X.  

3.  Independent residuals: The residuals are assumed to be independently and 

identically distributed (i.i.d).  Residuals independent of each other have no 

correlation or covariances. Autocorrelation is the condition of correlated 

residuals (Chatterjee & Hadi, 2012). 

2.10.4.3   Assumptions About the Predictors 

1. Nonrandom predictors: The predictor variables are assumed to be nonrandom, 

however in most real-world applications and scenarios, this assumption 

doesn’t hold. The interpretation of a model’s theoretical results can continue 
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to hold but altered to ensure all inferences are reserved conditional on the data 

observed. (Chatterjee & Hadi, 2012).  

2. No measurement error: The input values of 𝑥1𝑗 , 𝑥2𝑗 , 𝑥3𝑗 … , 𝑥𝑛𝑗; 𝑗 = 1,2 . . 𝑝,  

are assumed to have been measured reliably without error. However, this 

assumption is usually not satisfied as measurement error and is a difficult 

problem to correct for.  This is especially true in fields and domains where the 

variables of interest to a researcher are particularly difficult to measure and 

record.  If measurement error does exist, then relationships between predictors 

and the response variable may be overestimated or underestimated (Chatterjee 

& Hadi, 2012).    

3. The predictor variables are assumed to be independent of one another 

(Chatterjee & Hadi, 2012). Violation of this assumption, in which case the 

predictor variable is not independent and are instead associated with one 

another, is called “Collinearity”. While this assumption in its most orthogonal 

sense is often violated, violations up to a certain extent do not pose any 

problems with the interpretation of the model. Weak correlations between 

predictor variables results in minimal interpretability issues. However, large 

correlations between predictors implies strong inter variable relationships, and 

this can pose an enormous risk in how the model is interpreted.  

The predictor variables are also assumed to be free of multicollinearity. 

Multicollinearity, an issue in model specification, occurs when two or more 

predictor variable are highly interrelated (James et al., 2013). Multicollinearity 

can be considered a redundancy of information in the model. Depending on 
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the exact predictors under examination, multicollinearity is often an issue of 

an innate, existing relationship amongst the variables (Chatterjee & Hadi, 

2012), such as between years of education and annual income. 

Multicollinearity may also occur because of insufficient data, incorrect use of 

dummy-coded variables, including a predictor that is calculated from two 

other predictors, or including very similar predictors (Chatterjee & Hadi, 

2012). Often considered a source of error, the presence of multicollinearity 

can make interpretation of the model difficult and diminish the predictive 

utility of the model. Violations of this assumption often result in imprecise, 

fluctuating regression coefficient estimates.  

2.10.4.4   Assumptions About the Observations 

1. Equal reliability: All observations are assumed to be reliable, and equally 

responsible in determining the regression results and influencing the 

conclusions (Chatterjee & Hadi, 2012).  This is an assumption not often met 

as there are usually data points with unequal influence in most regression 

models. 

2.11   Primer on Inference Modeling and Predictive Modeling 

In general, there are a few broad reasons as to why someone may choose to build 

a regression model and how it fits the purpose of this study.  

1. Inference: To put it simply, we use a regression equation to understand how 

the response variable Y is affected by changes in the predictor variables. 

a. Description: The regression equation is purely descriptive but provides 

the power and ability to model a complex system with interactions 
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(Chatterjee & Hadi, 2012).  There are two goals of the model that are 

important: (1) account for as much systematic variation of the process 

as possible, (2) The other goal is to describe the process or complex 

system with a parsimonious model.  The result provides a model that 

provides the least number of predictor variables to account for the 

largest part of the variation in the response variable (Chatterjee & 

Hadi, 2012). 

b. Control:  A regression equation may be used as a tool for control, in 

which the researcher seeks to determine the magnitude by which 

predictor variables must be manipulated (increased and/or decreased) 

to achieve a specific response variable value (Chatterjee & Hadi, 

2012).  

2. Predictive Modeling: The regression equation is constructed for the main goal 

of prediction, that is, predicting the response variable value of a future 

observation given their measured values for the set of predictor variables. In 

many scenarios, the set of predictor variable inputs are either easily obtained 

or readily available, but the response variable output is difficult to ascertain, 

extremely valuable, or extremely important, and hence we will attempt to 

predict it using the regression equation and model.  

2.12   Tradeoff of Model Interpretability and Model Flexibility  

 There is a distinct tradeoff between flexible methods and inflexible methods and 

how they relate to model interpretability.  In the setting where inference is the main goal, 

there is a greater emphasis and focus on estimations that are easy to interpret and very 
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accurately interpreted. When the prime goal is inference, the estimated function �̂�, needs 

to be able to describe a given process or complex interacting system. Questions such as:  

(1) Which predictor variables are significantly associated with the response variable, 

and/or (2) What is the magnitude and direction of the relationship between the response 

variable and each predictor variable, are all questions better suited to be answered with a 

relatively inflexible parametric model such as linear models like linear regression.  The 

linear model is chosen since the interpretation is easier to understand the predictor and 

response variable relationship but is conditional on a truly linear relationship between the 

predictors and response variables (James et al., 2013).  

 Inflexible methods generate a smaller hypothesis space of possible shapes to 

estimate f, while flexible methods generate a much wider range of possible shapes to 

estimate f. It is important to clarify that parametric methods are a broad class of methods 

that include both flexible and inflexible function estimations (James et al., 2013).  Figure 

2.6 provides an example of the tradeoff between flexibility and interpretability.  

 

 

Figure 2.6. Flexibility vs interpretability tradeoff. Source: Introduction to Statistical Learning. 
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2.13   Framework for Measuring Error  

 There is a range of different criterion to be used to judge the accuracy of various 

fitted equations. The most important criterion used in comparing sets of candidate models 

ultimately depends on the prime goal of the analysis, whether it is prediction or inference.  

The regression model with the greatest R2 is the full fitted model accounting for all the 

predictors.  However, models with the lowest test set error should be chosen (James et al., 

2013).  The reason full fitted models always will have the highest R2 and lowest RSS is 

explained later in this chapter. Selecting the best model by test set error is dichotomized 

to two common approaches (James et al., 2013):  

1. Directly estimating the Test Error via resampling methods or hold out sets of 

unseen observations.  

2. Introducing an adjustment to the training error to explain the bias for 

overfitting is made by indirect estimating (James et al., 2013). 

2.13.1   Indirect Estimate of Test Error 

 In this case we are not creating a validation set or test set to measure error on and 

use as generalization error. Instead we are approximating it using the error from the data 

we trained and built the model on, (e.g., the Training Error). Adjusted R2, Akaike 

Information Criterion (AIC), and Bayesian Information Criterion (BIC) are all ways to 

indirectly estimate the generalization error of a model. These techniques penalize 

overfitting by adjusting the RSS (residual sum of squares) based on the size of the data in 

which the model was built on, and the number of parameters in the model. In cases where 

there are many samples the model was trained on relative to the number of parameters in 

the model, the imposed penalization or adjustment of the RSS is small. However, in the 
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opposite case, in which there is a small number of samples in the data relative to the 

number of parameters in the model, then the penalization is much larger. This is because 

models trained on large sets of data relative to a moderate number of parameters in the 

model often do not overfit the data, whereas in the inverse scenario, the model is 

overfitting the data (James et al., 2013).  

 Models will be selected based on the attempt to balance conflicting demands of 

fitting accuracy and simplicity (Chatterjee & Hadi, 2012). When parameters are added to 

the model in which case they do not result in a large enough decrease in training error, a 

penalty is applied in the form of a larger AIC and BIC value for that model.  When 

comparing various candidate models, smaller values of BIC and AIC are preferred since 

they suggest a lower test error and thus better generalization performance.  BIC is 

preferred over AIC due to its larger penalization of overfitting when irrelevant predictor 

variables are included in the model (Chatterjee & Hadi, 2012).  

 𝐴𝐼𝐶 =
1

𝑛�̂�2
(𝑅𝑆𝑆 + 2𝑑�̂�2)  where d equals the number of parameters in the model 

𝐵𝐼𝐶 =
1

𝑛�̂�2
(𝑅𝑆𝑆 + log (𝑛)𝑑�̂�2)  where d equals the number of parameters in the 

model 

 Adjusted R2 is a goodness of fit measure like R2. It is used for selecting among 

models containing different numbers of parameters (e.g., selecting among a set of models 

which contain different numbers of predictor variables). Adjusted R2 is a popular and 

well-motivated alternative to R2 and should be used in place of R2 (Chatterjee & Hadi, 

2012) . Whereas R2 represents the total proportion of variance in the response variable 

explained by the model, Adjusted R2 provides a neutral estimate of the portion of 

variance explained.  Adjusted R2 also takes the sample size and number or predictor 
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variables into account as well (Duke University, 2015) . R2 is a measure of goodness of 

fit that increases as more predictors are added to the model. Adjusted R2 attempts to 

account for overfitting, by adjusting the value of R2. Adding additional noise variables to 

the model increases the size of the model and will lead to an increase in R2 quantity and 

decrease in Adjusted R2 quantity (James et al., 2013). The formula for Adjusted R2 is 

stated below: 

 𝑅𝑎
2 = 1 −

(
𝑅𝑆𝑆

𝑛−𝑑−1
)

(
𝑇𝑆𝑆

𝑛−1
)

     where d represents the number of variables in the model, n is 

the number of observations, RSS is the residual sum of squares, and TSS is the total sum 

of squares.  

For the above equation TSS, total sum of squares, is defined as TSS =∑ 𝑦𝑖 −  �̅�𝑛
𝑖=1 . It 

is the sum of the squared differences between a sample observation response variable 

value and the overall mean.  The above-adjusted R2 equation shows that if predictor 

variables are added to the model, and there is not a corresponding sufficiently large 

enough decrease in RSS, then adjusted R2, which is an unbiased measure for goodness of 

fit, is decreased. Large discrepancies between R2 and adjusted R2 suggest overfitting and 

thus high generalization error or high-test set error. As in the case for R2, larger values of 

adjusted R2 are desired when selecting between similar models containing different 

numbers of parameters. 

Adjusted R2, AIC, and BIC were all used during the model selection process to 

choose a final model amongst a set of different candidate models.  This is further 

expounded upon in later chapters, specifically Chapters 3 and 4. 
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2.13.2   Direct Estimate of Test Error 

 The alternative approach is to directly estimate the generalization error (test set 

error) using cross validation or other resampling techniques which has an advantage over 

the indirect estimates of generalization error.  The advantage is that there are less 

assumptions being made about the true underlying model (James et al., 2013) .  The 

advancements in computers and computational power has decreased the challenges in the 

past regarding the performance capability in cross validation for very large numbers of 

either n samples, and/or p predictor variables in the model.  Resampling methods are an 

indispensable tool in modern statistics and facilitate refitting the model by repeatedly 

selecting and drawing samples for a training set and then refitting the model to gain a 

better understanding of the model (James et al., 2013).  Cross-validation is one of the 

most popular methods and has various types. Three of the main types of cross-validation 

are: 

1. Validation Set Approach 

2. Leave One Out Cross-Validation 

3. K-Fold Cross-Validation 

The validation set approach involves dividing the available data into two parts, 

training set data and validation set data. The validation set is also called a hold-out set. 

The parameters of the model are estimated using the training set data. The fitted model is 

used to make predictions on the hold-out set. Performance on the holdout set is measured 

and then used to compare different candidate models. The model which performs best on 

the hold-out set is the preferred (James et al., 2013). 
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 Leave-One-Out Cross-Validation (LOOCV) is an approach that splits the 

observed data into two parts much like the Validation Set approach. However, LOOCV 

differs is in the size of the validation sets. For LOOCV, the validation set for a single 

observation is sample size 1 and the training set is the remaining n-1 observations. The 

model is then fit on n-1 observations and is tested on a single observation. The real magic 

of LOOCV is that the above procedure is repeated “n” times. For each of the n number of 

repeats, the data is split into two partitions, the n-1 sized training set and a single 

observation validation set. No single observation is used as the validation set more than 

once. Therefore, repeating the process n times produces n predictions and thus n residual 

errors (James et al., 2013). 

 K-Fold Cross-Validation is another approach to cross-validation. The process 

involves a random division of the observation set into some set of groups of equal size.  

The validation set is the first fold (k) which is typically set to 5.  The remaining k-1 folds 

are the basis for fitting the model.  Errors are calculated based on the observations placed 

in the hold out fold of the model (James et al., 2013).  As shown in Figure 2.7, this is 

repeated k times, thus each of the k folds gets to act as the hold-out set k times and as a 

part of the training set k-1 times. The result is k estimates of error, which are averaged 

together to form the k-fold Cross-Validation estimate. This estimate is used when 

comparing different models as a part of the model selection process (James et al., 2013).  

Below are two examples of k-fold cross validation in which the mean squared error 

(MSE) and mean absolute error (MAE) were used to calculate prediction error (James et 

al., 2013). 
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𝐶𝑉𝑘 =
1

𝑘
∑ 𝑀𝑆𝐸𝑖

𝑘
𝑖=1    , i.e. the average of the k estimates of mean squared 

error for all the k-folds ( 𝑀𝑆𝐸1, 𝑀𝑆𝐸2, 𝑀𝑆𝐸3, … . , 𝑀𝑆𝐸𝑘)  

𝐶𝑉𝑘 =
1

𝑘
∑ 𝑀𝐴𝐸𝑖

𝑘
𝑖=1     ; i.e. the average of the k estimates of mean absolute 

error for all the k-folds ( 𝑀𝐴𝐸1, 𝑀𝐴𝐸2, 𝑀𝐴𝐸3, … . , 𝑀𝐴𝐸𝑘)   

 

Figure 2.7. Example of k-fold cross validation iterations. Source: Introduction to Statistical 

Learning. 

 

There are advantages and disadvantages to each of the above-mentioned methods 

of cross-validation. The first approach, Validation Set method, has the advantage of being 

easy to understand and fast to compute. However, its major disadvantages are that the 

resultant cross validation estimate of test error can be high for the variable.  The test error 

depends on which observations were included in both the training set and validation set 

(James et al., 2013).  Most statistical models tend to perform worse when trained on 

fewer observations.  In contrast, the other disadvantage with the validation set approach 

is that the validation set error may be an overestimate of the generalization error (James 

et al., 2013).  Leave-Out-One Cross-Validation or K-Fold Cross-Validation, have the 

major advantage of using a procedure which requires the training of the model multiple 
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times on different subsets of the data. For that reason, these approaches tend to not over 

estimate generalization error for a model as much as the validation set approach (James et 

al., 2013). When Leave-One-Out cross-validation is not computationally feasible due to 

dealing with an extremely large data set, K-Fold cross-validation is an efficient 

alternative (James et al., 2013). Typically, the number of folds is usually between 5 and 

10.  

Neither Leave One Out Cross Validation (LOOCV) or K-Folds Cross Validation 

was used as a part of the model selection procedure detailed in Chapters 3 and 4 of the 

praxis.  However, it is presented here within the literature review since it is relevant to the 

research. 

2.13.3   Choosing the Right Error Metric to Assess Predictive Power  

Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute 

Error (MAE) are popular measures for quantifying the extent to which a predicted output 

matches the observed output (James et al., 2013). MSE is the average of the Residual 

Sum of Squares (RSS), while RMSE is the square root of that quantity. As mentioned 

earlier, RSS is the sum of the squared differences between the estimated functions output 

and the true observed output,  𝑅𝑆𝑆(𝛽) =  ∑ (𝑦𝑖 − 𝑓𝑛
𝑖 (𝑥𝑖))2 . The formulas for MSE and 

RMSE are presented below:  

  𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑓𝑛

𝑖=1 (𝑥𝑖))2 

  RMSE = √𝑀𝑆𝐸 = √
∑ (𝑦𝑖−�̂�𝑛

𝑖=1 (𝑥𝑖))2

𝑛
  

 MAE on the other hand is the average of the absolute differences between 

predicted outputs and observed outputs. Mean Absolute Error, much like Root Mean 
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Squared Error, has the advantage of expressing error in the units of the response variable 

of interest. Since the absolute error, | 𝑦𝑖 −  𝑓(𝑥𝑖) | is used and instead of the squared error 

formula, ( 𝑦𝑖 − 𝑓(𝑥𝑖))
2

, when using MAE, all errors are relatively weighted the same. 

MAE places a linear penalty on the error, whereas MSE and RMSE place a quadratic 

(squared) penalty on the errors (James et al., 2013). 

  MAE = 
1

𝑛
 ∑ | 𝑦𝑖 −  𝑓(𝑥𝑖)|𝑛

𝑖=1  

 Thoughtful and careful consideration should be employed when selecting between 

different error measures. RMSE has the benefit of penalizing large errors more than 

smaller errors since it applies a quadratic (squared) weight, while MAE penalizes all 

errors equally since it uses a linear weight. An appropriate example if one might use 

MAE as the primary criterion is when forecasting prices and for the organization 

employing the model, a forecast error of 8 units only costs TWICE as much as an error of 

4 units. In this scenario the true cost of an error is proportional to the size of the error.  

 Within Chapter 4, all three above mentioned statistics, Root Mean Squared Error, 

Mean Squared Error, and Mean Absolute Error (MAE) are reported for various candidate 

models and the selected final model. 

2.14  Linear Regression Variable Selection Procedures 

 There are many methods and techniques for variable selection, both classic and 

modern.  These techniques that are chosen are in part due to scenarios of either (1) 

Subsets of the predictor variables are correlated with one another to a problematic degree, 

(2) Subsets of the predictor variables are “noise”, which is irrelevant and unrelated to the 

response variable (Chatterjee & Hadi, 2012).  Retention of these variables can lead to 

unnecessary complexity, inflated variance, loss of precision, overfitting, and other 
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problems in the model, affecting interpretability and predictive ability.  There are three 

important classes of variable selection methods, (1) Subsets Selection, (2) Regularization, 

and (3) Dimension Reduction Techniques (James et al., 2013).  This praxis utilizes a type 

of Subsets Selection technique called Best Subsets Selection.  Further details and 

information regarding how Best Subsets Selection were utilized in choosing which 

predictor variables to include in the final model can be found in Chapters 3 and 4.  Other 

subset techniques for variable selection are Forward Selection, Backward Elimination, 

Stepwise Method, and Best Subsets Selection.   

 The application and use of the variable selection procedures Forward Selection, 

Backward Elimination, Stepwise method, and Best Subsets Selection all produce several 

regression equations containing different numbers of predictor variables (Chatterjee & 

Hadi, 2012).  These various equations can be evaluated using advanced statistics such as 

AIC, BIC, or Adjusted R2, since they provide a suitable way to compare models of 

different numbers of predictor variables.  

2.15   Knowledge Gaps in Literature Review 

Extensive literature research for the use of predictive analytics and multiple 

regression in forecasting the rates of surface clearance based on the various predictor 

variables associated with surface and subsurface clearance operations were conducted.  

The use of predictive analytics for forecasting munitions clearance rates or levels of 

resources required for munitions response action is not widely used, if at all.  The 

literature research resulted in no literature related to predicting munitions-related 

resources or predicting the number of acres that could be surface or subsurface cleared 

based on certain predictor variables.  The munitions response industry is rather unique 
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due to the acute risks related to munitions and relatively a new industry as compared to 

more established industries such as the construction and environmental remediation.  

Most forecasting for munitions clearance durations, level of resources needed, the 

number of acres cleared per day or week is based on the expert judgment within an 

organization.  Historical cost and operational performance data are not readily available 

to the public due to the sensitivity of cost data and competitive nature of the acquisition 

tools used to acquire the services of munitions response contractors. 

As presented earlier, most of the munitions response related literature were related 

to DoD policies, processes, GAO reports, EPA guidance, stakeholder guidance, magnetic 

sensor development for UXO detection, hazardous risk assessments, and explosive 

safety.  A host of literature were also found in research and testing munition response 

technologies related to intrusive subsurface work, geophysical mapping, detection, and 

discrimination of munitions items from non-munitions items located beneath the land 

surface.  DoD's Strategic Environmental Research and Development Program (SERDP) 

has been the leader in funding research in geophysics based terrestrial detection systems 

for subsurface munitions and underwater munitions. 

In recent years, government agencies and companies have been generating 

massive amounts of data associated with business processes, finances, and operations.  

Big data analytics involves using data mining techniques to mine data from various 

sources and merge it which historical data to make predictions and informed decisions 

about the performance of a business market or other industry.  The amount of data 

collected and stored by firms in the munitions response industry is massive, especially 

digital geophysical data.  However, operational and performance data within the 
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munitions response industry appears to remain hidden within each firm and may be 

dormant and unused for any data analytics.  The use of predictive analytics within the 

munitions response industry is not widespread publicly.  There was very little to no 

predictive analytics information available about the performance of surface and 

subsurface clearance operations in the literature search.  The potential benefits of 

analyzing munitions clearance and cost information could be significant.  Appropriate 

data analytics techniques could help firms identify key factors or variables that contribute 

to munitions clearance operational performance and the risks associated with those 

operations. 

These concerns and gap in the literature search drive the interest and need for 

research in examining a solution that can assist firms in predicting preliminary baseline 

estimates of operational resources required on a per acre basis to perform specific 

response actions.  The purpose of this research is to examine the relationship and 

influence of factors (independent and dependent variables) that predict the surface 

clearance acres cleared of munitions and non-munitions related debris at munitions 

response sites based on production data, labor resources, site physical properties, amount 

of munitions contamination, and vegetation removal.  The application of multiple 

regression techniques is used to examine the relationship between the variables.  It is 

anticipated that a forecasting technique will have a practical application in the Munitions 

Response Industry by assisting firms in their initial screening and risk decision-making 

process when deciding on pursuing or not pursuing various acquisition opportunities 

associated with munitions response action contracts. 
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Chapter 3: Methods 

 

Unexploded ordnance (UXO) poses serious safety risks to the public.  Many sites 

are still unsafe and unsuitable for most kinds of public, commercial, agricultural, or 

private land use without significant Department of Defense (DoD) resources and capital 

investment in restoring these lands to within acceptable human health risk hazards  (DoD, 

2006).  No accepted standard exists for the restoring lands free of UXO.  The cleanup of 

UXO sites is unique and unlike the traditional cleanup of hazardous waste sites where 

standard acceptable limits for cleanup have already been established.  Each site is unique 

and requires an agreed upon site-specific approach between the DoD and the stakeholders 

to reach an agreed-upon risk-based cleanup standard (i.e., surface clearance, subsurface 

clearance, etc.).  For example, some stakeholders may want all the land cleared of UXO 

(i.e., surface, and subsurface clearance) to a depth of several feet below the surface, while 

other stakeholders may want to clear UXO from only the surface area to achieve 

immediate risk reduction until additional funding is obtained or risk scenarios change.  

Surface clearance is the least costly alternative, with up to 30 times less expensive than 

subsurface clearance  (RAND, 2005).   

Estimating the cost of  UXO cleanups is a unique challenge due to the 

uncertainties and complexity of site factors, such as: vegetation density; the amount of 

UXO and non-UXO related contamination; amount, and depth of subsurface UXO and 

subsurface metal debris; limitations of UXO detection technologies; available resources; 

site coordination; stakeholder and regulatory engagement; current and future land use; 

and budgetary constraints.  The cost of cleanup is further compounded by changes in 
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DoD project scopes and expansion of cleanup areas due to the discovery of additional 

contamination as presented in the Problem Statement. 

These issues of concern drive the interest and need for further research in 

exploring a practical solution to aid in predicting munitions surface clearance rates. The 

overall purpose of the model is to be able to assist munitions response project managers, 

program managers, and decision makers in predicting munitions surface clearance rates 

to help support pre-bid decision making in acquisition opportunities, resource, and 

operational planning, and management of on-going field operations for surface 

decontamination activities to mitigate public health and environmental risks.  The 

application of multiple regression techniques is used to examine the statistical 

relationship and significance of the variables. The model examines the munitions 

response predictor variables that are significant or not significant in predicting the weekly 

number of surface acres decontaminated of munitions and munitions-related 

contamination based.  The effectiveness of the model is based on the statistical 

relationship of predictor variables and response variable commonly used in the 

measurement of field operations for munitions response clearance activities.  The 

variables are categorized by (1) number and type of labor resources, (2) operational time 

in the field, (3) quantity of munitions and munitions-related contamination cleared, (4) 

physical site characteristics, and (5) density and amount of vegetation clearance.  It is 

further anticipated that the forecasting model will provide the foundation to explore 

subsequent applications for munitions decontamination activities, such as digital 

geophysical detection operations, subsurface clearance operations, and underwater 
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clearance activities.  Data from actual DoD surface clearance site decontamination 

activities were collected and used for building the multiple regression model. 

Chapter 3 provides a comprehensive summary of the research methodology 

performed to address the Research Questions and Hypothesis presented in Chapter 1. 

Chapter 3 is divided into the following main sections: data collection, research design and 

methodology, appropriateness of research, data identification and collection, data analysis 

process, and a chapter summary. 

   Figure 3.1 below provides a graphical representation of the methodology 

followed in the study and begins with defining the initial problem through data analysis, 

model building, and the final model evaluation for the intended purpose of the study.  

The data analysis plan in Chapter 3 and results provided in Chapter 4 follows the 

methodology closely as presented in Figure 3.1. 

3.1   Data Identification and Collection 

The removal and clearance of munitions from the land surface add immediate 

value to the land by reducing the immediate risk and human exposure to UXO.  The 

likelihood of a severe accident or potential death resulting from an unintentional 

detonation is reduced significantly.  By clearing the surface area, access to the site can 

occur with certain restrictions and facilitate subsequent munitions response action 

activities. The ability to forecast the number of surface acres cleared on a weekly rate 
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Figure 3.1.  Graphical Representation of Methodology Approach  
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integrated with a different set of variables, different level of contamination, and level of 

resources.  Focusing on activities associated with only surface clearance decontamination 

will assist in determining the value of the proposed methodology for further use in 

predicting other subsequent munitions response activities, such as digital geophysical 

mapping, subsurface clearance, demilitarization and range scrap processing and disposal. 

To help support and provide value in forecasting the number of surface acres that 

can be decontaminated and cleared of munitions items, data were collected from five 

different contractors working at various sites within one munitions response area.  This 

approach consisted of using actual field data collected from various sources specific to 

surface clearance operations conducted at a large and heavily contaminated military 

range impact area.  Sources of data consisted of: (1) field operational performance charts, 

(2) surface clearance production tables, (3) monthly and quarterly field operational 

summary reports, (4) After Action Reports, (5) weekly field summary reports, and (6) 

production maps.  The data was used to construct the linear regression model which 

estimates the quantity and rate of surface acres cleared of munitions items and munitions-

related contamination.  The surface area cleared of munitions items and munitions-related 

contamination were representative samples of munitions response sites located within a 

3500-acre former military live impact area used in the past for air to ground, ship to 

shore, and ground to ground-live fire training. The large impact training area was used for 

over 60 years with live fire training.  The area is grossly contaminated with tens of 

thousands of live and inert munitions items, hundreds of destroyed targets, and tens of 

millions of pounds of munitions-related debris and cultural debris. 
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A map of the Munitions Response Area (MRA) is provided below in Figure 3.2.  

The MRA is divided into individual munitions response sites (MRS’s) and numbered 

accordingly.  MRS’s vary in size and can range from one acre to thousands of acres.  The 

MRS’s are further divided into grids that are approximately one-quarter (1/4) acre in size.  

UXO Teams work are assigned to various grids to perform surface clearance activities.  

Progress of work is tracked and annotated on the map when completing various phases of 

surface clearance activities within each grid of a MRS.  The tracking process of the 

surface clearance activities includes: (1) initial sweep of non-UXO material, (2) 

vegetation removal, (3) surface clearance of munitions debris and UXO deemed safe to 

move, (4) collection of munitions debris for further processing and disposal, (5)  

consolidation and preparation of UXO items for explosive demolition activities as shown 

in Figure 3.3 below, and (7) final clearance and contractor quality control/quality 

assurance activities. 

 

Figure 3.2.  Sample Map of a Munitions Response Area divided into Munitions Response Sites 
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Figure 3.3.  Consolidation of UXO items and preparation of explosive demolition 

Sampling data was collected to represent the predictor, or independent variables 

of (1) the number of workdays worked per week for UXO Techs, (2) total number of 

UXO Tech hours worked per week, (3) number of true hours worked in the field per 

week, (4)  number of UXO Technicians working in the field per week, (5) number of 

workdays worked per week for vegetation removal technicians, (6) number of Vegetation 

Removal Technicians, (7) total hours worked by vegetation removal technicians, (8) true 

number of hours worked in the field performing vegetation clearance, (9) quantity of 

munitions and explosives of concern (MEC), material potentially presenting an explosive 

hazard (MPPEH), range-related debris (RRD) and munitions debris items cleared per 

week, (10) weight of metallic scrap items removed and cleared per week, (11) slope 

condition of munitions response site, (12) vegetation density, and (13) number of 

vegetation acres cleared.  Data were also collected to represent the response variable Y, 

the quantity of the number of acres cleared of munitions and munitions-related debris.  

The abbreviated version of independent and dependent variables are listed in Table 3.1.  
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Appendix 4 lists the independent and dependent variables and provides a definition for 

each variable.  Table 3.1 presents the independent and dependent variables along with the 

description of each of the variables under evaluation in the development of the model.   

Data collection consisted of extracting data from actual field operations.  Sources 

of data consisted of: (1) field operational performance charts, (2) surface clearance 

production tables, (3) monthly and quarterly field operational summary reports, (4) After 

Action Reports, (5) weekly field summary reports, and (6) production maps.  An Excel 

spreadsheet was used to compile the raw data into weekly summaries of the independent 

variables selected for study to predict the response variable (i.e., the number of surface 

acres cleared) and is included in Appendix E.   

Consideration was given to add additional sites with similar characteristics from 

other munitions response areas at other locations.  However, the differences in the raw 

data collected and reported, the differences in clearance objectives (i.e., surface, DGM, 

and subsurface combined), and inconsistencies in data collection and recording would 

have required significant transformation, additional assumptions, and labor details that 

were not readily available nor obtainable due to sensitive and contractor privileged 

information.  It was determined that multiple sites within a large munitions response area 

with similar physical characteristics, level of contamination, and similar processes would 

be more consistent for developing for analysis purposes.  It is anticipated that the 

modeling of the one munitions response area was applied to the modeling approach of 

other munitions response areas with similar variables, similar site characteristics, and 

similar surface contamination levels.      
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The data represent vegetation removal and surface clearance activities over a five-

year period.  There were 149 observations recorded, which represents vegetation and 

surface clearance activities performed over a total of 149 weeks.  The weekly data 

represent surface clearance activities that occurred between a five-year period from 2006 

through 2011.  The operation and process of manual vegetation removal and manual 

surface clearance remained similar over the time.  Except for the use of standard 

chainsaws to cut vegetation, no mechanized equipment was utilized for actual vegetation 

cutting or actual surface clearance activities for the sites under study.  Mechanized 

equipment and other labor resources from separate and independent contractors were 

used to move large masses of cut vegetation material, and stockpiles of range scrap and 

munitions debris from each of the acres surface cleared to other locations for further 

demilitarization and processing of recycled materials, which were not evaluated for this 

study.  Data were initially reviewed and collected through online research of DoD sites 

containing Administrative Records on file for the environmental and munitions response 

program.  Research for performance related data was performed and collected for sites 

with the desired data variables, specifically for sites that had Remedial Actions or 

Removal Actions completed in the past.  Four sources of data were used for this research 

as described below:     

• After Action Reports (AAR):  The purpose of the AAR is to document that all 

explosives safety aspects of the selected response have been completed per the 

approved Explosive Safety Submission (ESS) required by the Naval Ordnance 

Safety and Security Activity (NOSSA; 2011).  AARs provide a brief description 

of the MRA or MRS; summary of the MEC or MPPEH found, description of the 
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relative effectiveness and any limitations of the technologies used, a summary of 

the Quality Control (QC) and Quality Assurance (QA) reports for the response, 

anticipated end use of each area, a summary of land use controls implemented and 

summary of provisions of long-term management.   

• TCRA Contractor Monthly and Quarterly Progress Reports:  The purpose of 

the progress reports is to report an overall summary of the MEC Removal Action 

that was performed at a specific MRS under contract during the reporting period.  

The progress report contains a technical summary, non-field operations, weather 

data, weekly field production reports (field labor, MEC/MPPEH removed per grid 

or acre, Vegetation cut and removed per acre or grid, removal of non-MEC 

related debris), production charts, contract task orders issued, variance reports, 

corrective actions taken, difficulties encountered, maps of progress, and other 

contract administrative issues specific to the performance of the munitions 

response action. 

• TCRA Field Production Data: The purpose of the production data is to record 

and track contractor daily or weekly field activities to monitor field labor 

utilization, production, schedule, and other performance criteria.  Field data were 

recorded in Daily Field Production Reports or Personal Digital Assistant devices 

and transferred to Access or Excel Data Files.  The information collected 

consisted of:   

o identification of locations and amount of munitions items and non-MEC 

related debris removed per grid or acre,  

o number of field labor personnel and hours worked for MEC activities,  
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o number of vegetation field labor personnel and hours worked,  

o weekly hours of field labor,  

o number of vegetation grids or acres cleared of vegetation,  

o number of subsurface anomalies identified and removed,  

o identification of anomalies and depth of anomalies,  

o Quality Control, disposal, and demolition of live MEC items. 

• Remedial Investigation/Feasibility Studies (RI/FS):  The RI/FS serves as the 

CERCLA investigative phase for collecting environmental or munitions related 

data to characterize site conditions, determine the areal extent of contamination, 

nature of the waste, and assesses the risk hazards to human health and the 

environment.  The RI/FS is an investigative process and not a production type 

process such as a Remedial or Removal Acton that is directed towards 

remediating the site of all contaminants.  A review of the RI/FS data showed very 

little production type data on surface clearance and was not considered any further 

for this study.  

A summary of the sources and screening for appropriate data collection for the 

study is provided in Table 3.1.  Monthly, Quarterly Progress Reports, and Field 

Production Reports were selected based on the most detailed data available for predictor 

variables and considered important for selection of variables.   
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Table 3.1. Preliminary Research Screening Matrix for Dependent and Independent Variables 

 

Data Screening Matrix 
Research 

Resource 

Project 

Data 

Summary 

Weekly Field 

Production  

Performance Data 

Field Labor 

Resources 

Physical Site 

Characteristics 

Weekly Count of 

MEC and Non-

MEC Related 

Debris 

AAR X   X  

Monthly 

Reports 

X X X X X 

Field Production 

Data 

 X X X X 

RI/FS X   X X 

 

 

3.2   Data Analysis Procedures  

To examine the research questions, a multiple linear regression was conducted to 

assess if predictor variables, X₁ through X₁₃ predict the response variable, Ƴ₁.  Multiple 

linear regression is used to assess the relationship among a set of categorical or 

continuous predictor variables and a single continuous response variable (Pallant, 2016).  

The following regression equation (main effects model) was used, where Y is the 

response variable, B is the unstandardized beta coefficients (slope), a is the intercept, and 

X is the predictor: 

Ƴ₁ = a + B₁X₁ + B₂X₂ + B₃X₃ + B₄X₄ + B₅X₅ + B₆X₆ + B₇X₇ + B₈X₈ + B₉X₉ + 

B₁₀X₁₀ + B₁₁X₁₁ + B₁₂X₁₂ + B₁₃X₁₃      (3.1)  

Since serious distortions and misrepresentations of model coefficients, t-Tests, 

and p-values could occur,  digital environments were used to perform the statistical 

analysis.  Each digital environment is essentially a different suite of tools or statistical 

software package.  The initial analysis was performed in Microsoft Excel with the aid of 

the Statistical Analysis Software (SAS) plug in.  SAS provides a software suite for 

advanced multivariate analytics, predictive modeling, business intelligence, and data 

mining.  Both SAS and Intellectus Statistical Software was used for the analysis.   
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The initial examination of data begins with an Exploratory Data Analysis (EDA).  

EDA is a critical early step in data analysis that employs a variety of graphical and 

numerical techniques to summarize datasets, determine relationships between variables, 

and uncover underlying structure (Cox, 2017).  The goal of EDA is to maximize insight 

into the data through both graphical visualization and numerical analysis to detect 

patterns and anomalies in the data (Cox, 2017).   

3.2.1   Variable Identification 

The first step in the Exploratory Data Analysis is Variable Identification.  The 

type of variable, whether predictor or response, is first determined.  The variables 

examined were selected from the munitions response performance charts and field data 

reports as it related to labor resources, physical site characteristics, and amount of 

contamination that were decontaminated from the surface land area.  Other variables, 

such as type of ordnance and depth of find were also available in the data search.  

However, there was inconsistency in the data collected between the various contractors 

and sites under analysis. Because these variables that were not reported consistently in 

each of the data collection reports, they were not included as candidates for variable 

identification.  A summary of the identified variables selected for the regression model 

and their levels of measurement are provided in Table 3.2 and Appendix D. Appendix D 

provides a more detailed description of the definitions for each predictor and response 

variable.  
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Table 3.2.  Identification of Dependent and Independent Variables for Surface Clearance 

Activities 
Variable 

ID 

Variable Name  Variable Type Definition 

Response (dependent) variable:   

 

Y1 

Weekly Number of Surface 

Acres 

Continuous Number of acres surface cleared per 

week of MEC, MPPEH, RRD, MD, 

metal scrap, targets, and debris 

Predictor (Independent) Variables:  Definitions 

Variable ID Predictor Variable Name   

Xₒ Site ID Scale Identification of Munitions 

Response Site 

X₁ MEC_WRKDAYS/WK Scale Weekly number of Field UXO Tech 

Days worked 

X₂ Total MEC-SITE-HRS/WK Scale Total number of weekly hours for 

UXO technicians performing all 

related surface clearance activities ( 

X₃ True MECHRS/WK Scale Weekly number of True hours for 

UXO Technicians working in the 

grid  

X₄ Num of UXOTECH/WK Scale Weekly number of UXO 

Technicians performing surface 

clearance activities  

X₅ VEG_WRKDAYS/WK Scale Total number of workdays per week 

for Vegetation Removal 

Technicians performing vegetation 

clearance ( 

X₆ Num of VEGTEC/WK Scale Weekly number of Vegetation 

Removal Technicians performing 

vegetation clearance 

X₇ TOTAL_VEG SITE HRS/WK Scale Total number of weekly hours for 

Vegetation Removal Technicians 

performing vegetation clearance 

X₈ True VEGHRS/Wk Scale Weekly number of true hours for 

Vegetation Removal Technicians 

working in the grid  

X₉ NumOFMEC/MPPEH/RRD/

MD 

_ITEMS 

Scale Weekly estimated number of 

individual MEC, MPPEH, RRD, 

and MD cleared from the surface 

area 

X₁₀ SCRAPLBS Scale Weekly estimated weight of metal 

scrap, targets, and cultural debris 

removed from surface 

X₁₁ SLOPE Scale Average estimated slope of 

topography within sites completed 

on weekly basis  

X₁₂ VEGDEN Scale Average percentage of vegetation 

and tree canopy density within site 

area worked. 

X₁₃ Num of VEGACRE Cleared/Wk Scale Number of vegetation acres cleared per 

week within site area proceeding 

surface clearance activities. 
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3.2.2   Descriptive Statistics 

 This stage of the Exploratory Data Analysis included the application of graphical  

methods to explore the distributions of the variables.  The graphical techniques for the 

data analysis of the univariate variable will include histograms, box plots, frequency 

charts, and bar charts.  The choice of graphs will depend on the type of variable.   

 For continuous variables, the plots are meant to provide information about the 

central tendency of the distribution, spread of the distribution, and the shape of the 

distribution.  For example, predictors with bell shaped normal distributions are easy to  

interpret and have desirable properties for many ensuing statistical tests in the data 

analysis.  For variables that do not have symmetric or close to symmetric distributions, 

robust numerical estimates were used to measure central tendency and spread, or a data 

transformation can be used on the data to achieve normality.  For categorical variables, 

frequency tables were used to study the distribution of each category, nominal or ordinal, 

of the variable.  Specifically, the analysis is concerned with how categorically balanced 

or imbalanced the observations are.   

3.2.3   Bivariate Analysis 

 This phase of the Exploratory Data Analysis involves the use of graphical and 

numerical methods to visualize the relationship between variables.  Scatterplots and 

correlation coefficients were used to visualize and quantify the bivariate relationships 

between variables (Pallant, 2016).   

A key assumption of linear regression is the linearity of the relationship between 

the predictors and the response variables.  The functional form of the linear regression 

equation is assumed to be linear of the parameters, 𝑩𝟎  … . .  𝑩𝒑, where p equals the 
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number of predictor variables. For predictor variables that are determined to be 

continuous, scatter plots between the response variable Y and the individual predictor 

variable 𝑋𝑗 can reveal important information about the strength and type of relationship.  

Strong relationships, as evidenced by the scatter plot and further justified via a large 

correlation coefficient, are further potential indications that the predictor variable could 

be useful in modeling and predicting the response variable. The spearman correlation 

coefficient was used to assess the nonlinear relationship between variables.  “While the 

presence of a linear pattern is reassuring, the absence of such as pattern does not imply 

that the linear model is incorrect”  (Chatterjee & Hadi, 2012, p. 102)  

 Another fundamental and crucial assumption of the linear regression model is that 

the predictor variables are independent, therefore they are not correlated with one 

another.  For continuous predictor variables, scatter plots and correlation coefficients 

were used again as tools to reveal if there are strong interrelationships in the data.  Large 

(in absolute value) Pearson correlation coefficients indicate collinearity between two 

predictor variables.  A key assumption for the Pearson correlation requires that the 

relationship between each pair of variables is linear (Conover, 1981).  A violation of this 

assumption was detected if there is curvature among the points on the scatterplot between 

any pair of variables.   

The purpose of Exploratory Data Analysis is to investigate the data, and thus if 

there are strong collinear inter-relationships between the predictor variables, this will not 

be explicitly corrected for at this stage of the analysis.  It will however be noted, as these 

non-orthogonal relationships can create problems in future analysis and model 

interpretation.   
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3.2.4   Potential Outlier Detection and Exploration   

 Exploratory Data Analysis is also used to help identify univariate or multivariate 

outliers (Cox, 2017).  Univariate plots such as the histogram or box plot can be used to 

identify potential univariate outliers, while scatterplots can help detect bivariate outliers, 

which are points that may exist very far away from the higher density areas of data points 

in the plot (Pallant, 2016). At this point of the exploratory and investigative stage, 

outliers will only be identified and flagged as possible high leverage points; “In any 

analysis, points with high leverage should be flagged and examined later in the modeling 

process to see if they are influential” (Chatterjee & Hadi, 2012, p. 108).   

3.2.5   Missing Values and Data 

 Exploratory Data Analysis was used to identify observations with missing 

predictor variable values, and to quantify the magnitude of missing values for each 

individual predictor variable.  Since this is an exploratory phase, the actual decision on 

how to handle the missing values are addressed in the pre-processing stage of the actual 

data analysis and presented in Chapter 4.   

3.2.6   Pre-Processing 

 The pre-processing phase includes centering and scaling the data. The specific 

strategy that was used is standardization.  Centering and scaling of the input data has the 

effect of making the regression coefficient estimates unitless.  With standardization, these 

estimates are interpreted as marginal effects of the predictor variables in standard 

deviation units.  For example, a one standard deviation unit of 𝑋𝑗 results in a 𝐵�̂� change in 

the standardized units of Y.  Centering and scaling are also a preferred method of 
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preprocessing the input data, it is especially when the data exhibits collinearity 

(Chatterjee & Hadi, 2012).   

 Management of missing data and values is also included in the pre-processing 

phase.  There a few strategies to deal with missing data.  One such strategy is to omit 

records with missing data from the analysis.  Depending on the number of records with 

missing data, this can either lead to small or large losses of data.  Obviously, a large loss 

of data which would reduce the size of the data set can be harmful for the analysis.  Such 

harmful effects include increased risk of overfitting, collinearity, and total model 

variance.  “An alternative to omitting records with missing values is to replace the 

missing value with an imputed value, based on the other values for that variable across 

all records” (Calit Shmueli, 2010, p. 23). Another viable alternative to handling missing 

data is to examine the importance of the predictor variables whom have the most missing 

values and then decide whether to drop or retain that predictor. “If the variable is not very 

important than it can be dropped. If it is important perhaps a proxy variable with fewer 

missing values can be used instead” (Calit Shmueli, 2010, p. 24).  These approaches 

were considered during the model building phase and further elaborated on during the 

data analysis phase and discussed in the findings presented in Chapter 4.   

3.3   Model Building  

 The aim of the research is to create a model that is both descriptive and has 

predictive ability.  The linear regression model is chosen because of its advantages with 

interpretability, lending practical value to the results.  Coefficients are interpreted as the 

change in Y corresponding to a one-unit change in 𝑋𝑗 when all other predictor variables 

are held constant (Chatterjee & Hadi, 2012).  Finally, the linear model is preferred due to 



www.manaraa.com

79 

 

the principle of Occam’s Razor, which suggests simpler explanations over unnecessarily 

complex ones (Kneale, 1962).   

3.3.1   Modeling Procedure 

 At a basic level, the model building process will follow the flow chart process 

developed by Chatterjee and Hadi as presented in Figure 3.2 (Chatterjee & Hadi, 2012).  

The process consists of: (1) Model Formulation, (2) Model Estimation, and (3) Model 

Evaluation.  This is an iterative procedure, as it is unlikely that the first attempt will 

produce the best model.  During the modeling process, there were several reoccurring 

questions to consider and address during the modeling process (James et al., 2013) and 

they are as follows:      

1. Is there a relationship between the predictor variables and the response 

variable? 

2. How well does the model fit the data, and how strong is the relationship 

between the predictor variables and the response variable as determined by 

the model.   

3. Which predictors contribute to the response variable? 

4. How accurately can we estimate the effect of each predictor variable on 

the response variable?  

5. Is the relationship linear?  

6. How accurate are our predictions?  

Figure 3.2 below provides a flowchart showing the iterative process for multiple 

regression that was used to support the analysis of the multiple regression techniques 

used for the study. This was used as the baseline model to improve upon.   
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Figure 3.4. Flowchart showing iterative regression analysis process  

Adapted from Chatterjee and Hadi, 2012. 

 

First, a full model was fitted to the data.  The full model contained the full set of 

predictor variables as presented in Table 3.2.  Candidate models was chosen using a Best 

Subsets Selection procedure.  Best Subsets selection procedure involves fitting a separate 

least squares regression equation for each possible combination of the set of p predictor 

variables.  In total, the procedure fits 2𝑝 separate regression equations on different subset 

combinations (James et. al, 2013).  Of all the possible subset combinations of the 

predictor variables, a final model was chosen which maximizes the Adjusted R2 values.  

The authors of Introduction to Statistical Learning suggest that since training error (i.e., 
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the error on the dataset to fit the model) is a much smaller estimate of test error, that 

when choosing amongst candidate models, a different criterion should be utilized.  

Recommended criterion includes either cross validated prediction error, which is a direct 

estimate of test set error, or other metrics that provide indirect approximations of test set 

error such as Adjusted R2 and Bayesian Information Criterion (BIC) (James et. al, 2013). 

The reason Best Subsets Selection is used as the method for choosing which 

predictor variables to include in the final model is because this procedure can be used in 

both scenarios of when the predictor variables are collinear, and when the predictor 

variables do not exhibit strong collinearity (Chatterjee & Hadi, 2012).  When the data 

does exhibit collinearity, neither Forward Selection, Backward Elimination, or Stepwise 

methods are recommended.  Best Subsets Selection procedure is considered as one of 

many preferred alternatives (Chatterjee & Hadi, 2012).  The most efficient way to use the 

results of Best Subsets Selection procedure is to choose the top performing candidate 

models based on a few chosen statistics such as Adjusted R2, Bayesian Information 

Criterion (BIC), or cross validated prediction error.  For the top performing candidates, 

additional analysis is required such as assessing the residuals to ensure the strict 

assumption of linear regression are met (Chatterjee & Hadi, 2012). 

3.3.2   Model Validation 

 Validating a model consisted of checking and validating the assumptions of the 

linear model: linearity of the relationship between predictors and response variable, 

normality of the error distribution, homoscedasticity (i.e., constant variance) of the errors, 

independence of errors, and absence of multicollinearity.  If the model failed to validate 

the residual assumptions, these failures were detailed and discussed extensively.  
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Inclusion of new predictors into the model and transformations of the predictors or the 

response variable to remedy these above-mentioned failures were either performed or 

strongly considered.   

3.3.3   Checking the Linearity and Homoscedasticity Assumption 

 Linear regression models operate on the assumption that there is a linear 

relationship between the predictor and response variables (James et. al, 2013).  If the true 

underlying relationship between the predictors and the response variable is linear or close 

to linear, then a linear model should have the capacity to accurately describe this 

underlying linear relationship (James et al., 2013).  The assumptions were examined via 

scatterplots. The points should be randomly scattered around a horizontal line.  The first 

is the scatterplot of the standardized residuals versus the predicted values.  Any type of 

discernible and systematic pattern such as a nonlinear bow is an indication of non-

linearity in the relationship between the predictors and the response variable (Stevens, 

2016).  From this same scatterplot, homoscedasticity can be assumed if there are no fan 

or funnel like patterns when moving horizontally from left to right (Tabachnick & Fidell, 

2014).  The second scatter plot is of the observed versus predicted values. The points 

should be randomly scattered around the diagonal line for linearity (James et. al, 2013).  

3.3.4   Checking Independence of the Error Terms 

 In linear regression, the error terms are assumed to be independent (i.e., not 

correlated (James et. al, 2013).  Violation of this assumption, (i.e., error terms that are 

correlated), is defined as autocorrelation (James et al., 2013).  The Durbin-Watson 

statistic was used to check for autocorrelation (Tabachnick & Fidell, 2014).  To indicate 

absence of autocorrelation, the Durbin-Watson statistic should be near 2.00 (Field, 2013)    
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3.3.5   Checking for Normality Distributed Error Terms 

 For best model fit, error terms should be approximately normally distributed 

(Tabachnick & Fidell, 2014). To check and validate this assumption, a distribution 

analysis was conducted on the residuals. The graphical tools employed to assess 

normality of the residuals were the histogram and normal probability plot. Histograms 

should show data that follow a normal bell curve, while the normal probability plot 

should show data that conform to the diagonal normality line (Field, 2013).  

3.3.6   Multicollinearity Analysis   

 Multicollinearity occurs when two or more predictor variables are highly related 

(James et al., 2013). The presence of multicollinearity presents a significant problem 

when one of the goals of the research is inference modeling or process control, as it 

causes difficulty separating the variability in the response variable associated with each 

predictor and may be considered a source of error (James et al., 2013).  Therefore, the 

problem of multicollinearity can not only make interpretation and inference of the 

regression coefficients difficult, it can also diminish predictive ability of the model. 

Multicollinearity may be present due to a deficiency in the sample data, and therefore can 

be potentially remediated through the collection of more data (Chatterjee & Hadi, 2012).  

This is a common strategy to address overfitting.  Another possible reason for 

multicollinearity may be because the interrelationships among the predictor variables are 

inherently a characteristic of the system or process under investigation (Chatterjee & 

Hadi, 2012). To examine the possibility of multicollinearity, the variance inflation factor 

(VIF) was calculated for the estimated regression coefficients.  “The VIF is the ratio of 

the variance of 𝐵�̂� when fitting the full model divided by the variance of 𝐵�̂� if fit on its 
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own” (James et al., 2013, p. 101). VIF scores over 10 are an indication of extreme 

collinearity, while VIF scores of 1 indicates the complete absence of any 

interrelationships (Menard, 2009).   

3.3.7   Outliers, Influential Points, and High Leverage Points 

 The next aspect of model building is examining the effects outliers, leverage, and 

influential points can have on a model’s fit. Outliers were detected with a scatter plot of 

the studentized residuals vs fitted values. An outlier was considered any observation that 

has a studentized residual larger than ±3.00. Treatment of the outlier will happen upon 

further examination on a case by case basis.  Outliers should not necessarily be removed 

if they convey interesting information about the research or process under study (James et 

al., 2013).  

3.3.8   Hypothesis Testing of the Candidate Models 

 An F test was used as an omnibus test to assess whether the set of predictor 

variables collectively predicts the response variable (Field, 2013).  The null hypothesis is 

that all the predictors have no explanatory power.  The alternative hypothesis is that at 

least one of the predictors in the model has explanatory power. 

  𝐻0: 𝛽 = 0 ; i. e.  all the parameters equal 0  

  𝐻𝐴: 𝛽 ≠ 0 ; i. e at least one of the parameters is non − zero 

 If the p-value associated with the test is less than the chosen significance level of,    

α = .05, then the null hypothesis is rejected, and the alternative hypothesis is accepted.  

However, if the p-value from the F-test is greater than the significance level, then there is 

a failure to reject the null hypothesis.   
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3.4   Model Evaluation and Model Selection  

3.4.1   Evaluating the Candidate Models 

 For candidate models whose null hypothesis has been rejected, and make it past 

the residual analysis, various statistics can be used to assess performance.  As previously 

mentioned, Best Subset selection results in the creation of a set of candidate models, each 

of which contains a subset of the predictor variables.  To determine which of the 

candidate models is best, specific criterion are used to compare models.  Since the model 

containing all the predictors will always have the smallest Residual Sum of Squares 

(RSS) and the largest 𝑅2, these quantities are not used as they are poor estimates of test 

set error and generalizability (James, et. al, 2013).  Instead, a criterion that penalizes 

model complexity was used as the final criteria for selecting between different candidate 

models.  Statistics such as Adjusted R2, Akaike Information Criteria (AIC) and Bayesian 

Information Criteria (BIC) all penalize the model for added complexity that does not 

result in a large enough decrease in error.  It is important to note that sometimes 

individually, these three statistics can all point to the same conclusion and model, 

however in other scenarios, these different individual statistics may point to different 

suggested models.  This is due to different imposed penalties for model complexity and 

overfitting.   “BIC statistic places a heavier penalty on models with many variables, and 

hence results in the selection of smaller models” (James et al., 2013, p. 212).  

 Generally, if there are two extremely similar models in terms of their diagnostics 

and error statistics, then the model that is more parsimonious was preferred.  To adhere 

the principle of parsimony suggests that for ease of interpretation and understanding, to 

describe the relationship between the predictors and the response variable in as few 
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variables as reasonably possible. The term, reasonably, in this context translates to 

candidate models with high performance and low error statistics.   

3.4.2   Final Words on Model Selection 

Considering there is no single best subset of predictor variables, and multiple 

subsets of the predictor variables could be equally satisfactory and adequate, the model 

selection procedure will consider several candidate models for estimating the true 

underlying unknown population relationships between the response variable and a subset 

of the predictor variables.  “The various sets of the adequate variables provide insight on 

the structure of the data and help us in understanding the underlying process.  In fact, the 

process of model selection should be viewed as intensive analysis of the correlational 

structure of the predictor variables and how they individually and jointly affect the 

response variable under study” (Chatterjee & Hadi, 2012, p. 303).  The model selection 

procedure allows the researcher to consider several candidate models for estimating the 

true underlying population relationship between the response variable and subset of 

predictor variables.   

3.5   Summary 

 Data involving site contamination levels, physical site characteristics, and site 

clearance performance data were collected for multiple sites heavily contaminated with 

munitions within a munitions response area. An iterative model building process was 

used to determine the best multiple linear regression model to assess the research 

questions. The results and findings of the data analysis methodology are presented in 

Chapter 4. 
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Chapter 4: Results 

 

Chapter 4 provides the results of the data analyses presented in Chapter 3 and the 

findings of the research study.  Chapter 5 will include the interpretation and discussion of 

the findings, along with the conclusion of the research study results.  Chapter 4 focuses 

on presenting the results of the data analyses and findings and is divided into four parts.  

Part 1 presents the findings and results of the Exploratory Analysis.  Part 1 includes the 

Missing Values, Descriptive Statistics, Univariate Plots and Distributions, Bivariate Plots 

and Distributions, and Preprocessing of Data.  Part 2 presents model selection and 

validation process.  Part 3 includes an analysis of the final model. Part 4 is a summary of 

the results and findings.  

4.1   Part 1: Exploratory Data Analysis  

4.1.1   Missing Values 

 None of the seven original sites for data collection (A1, A2, B, D, E, F, or G-West 

V) had any missing values, whether a predictor variable or the response variable. For this 

reason, no imputation of missing values or dropping of cases with missing values was 

warranted.  

4.1.2   Descriptive Statistics 

Frequencies and percentages were calculated for categorical variables and means, 

and standard deviations were calculated for continuous variables. Sites A1 and A2 were 

grouped together due to their similarity and small counts for site A1. This grouping of 

sites A1 and A2 was only for the purposes of Exploratory Data Analysis. No sites were 

grouped during the regression analysis.  
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Figure 4.1 shows the frequency distribution for the Site IDs. Most cases came 

from sites F and G are where the most samples are drawn from.  

 

 

Figure 4.1. Frequency of records belonging to site. 

 

Table 4.1 below presents all the descriptive statistics segmented by Site ID.  The 

results show differences in central tendency (mean and median) and spread (variance and 

standard deviation) for a variable depending on the site.  

4.1.3   Univariate Plots and Distributions 

 To facilitate ease in the ability to recognize differences and similarities in patterns 

of a single variable, 𝑋𝑗, graphs and plots are presented. Figure 4.2 below provides the 

separate univariate distributions of the continuous variables in the model using a boxplot. 

Generally, boxplots are used to examine the distribution of the variables based on 

quantiles. It can also be used to identify univariate outliers as is the case with variable x9.   
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Table 4.1. Descriptive Statistics for the Continuous Predictors Segmented by Site ID 

 

 Figure 4.2 below shows the distributions of these same variables within the 

context of the different Site ID’s. Predictors X2, X3, X5, and X13 appear to share a trend 

of increasing quantities when segmented by Site ID. Variations between the segmented 

distributions of an individual predictor variable is useful in identifying potential 

importance of that predictor. For example, for the predictors X4, X6, and X10, the 

boxplots reveal considerable variation in the distribution depending on Site ID.  

The response variable is plotted as a boxplot both in its aggregate form (i.e. not 

segmented by Site ID), and when segmented by Site ID.   

count mean std min 25% 50% 75% max

X1: MEC WRKDAYS 149 4.6 0.73 1 4 5 5 5

X2: Total MEC SITE Hrs 149 1323.19 833.81 0 400 1350 2000 2700

X3: TRUE MECHRS 149 864.06 534.25 0 272 870 1326 1666

X4:  Quantity of 

UXOTECH
149 26.34 15.1 0 10 28 39 49

X5: VEG WRKDAYS 149 3.86 1.45 0 4 4.5 4.5 5

X6: Quantity of VEGTECH 149 23.89 14.78 0 10 32 36 42

X7: TOTAL VEG SITE 

HRS
149 1054.66 677.63 0 400 1440 1600 2100

X8: TRUE VEGHRS 149 717.12 460.78 0 272 979 1088 1428

X9: Quantity 

OFMEC/MPPEH/RRD/MD/ 

ITEMS

149 13926.99 19300.06 0 2000 5000 20661 129100

X10: SCRAPLBS 149 22633.63 23889.64 0 4500 12000 39965 94296

X13: Quantity of 

VEGACRE Cleared
149 5.32 3.69 0 2.35 5.13 8.1 15.75

Y: Quantity of SURFACRE 

Cleared
149 5.38 3.82 0 2.44 4.7 8 14.5

Descriptive Statistics for Continous Variables
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Figure 4.2.  Boxplots of all rescaled (standardized) continuous predictors. 

 

The boxplots and visualization for all the continuous predictor variables in the 

original units segmented by Site ID is presented in Figure 4.3 below.   
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Figure 4.3. Boxplots of all the continuous variables in original units segmented by Site ID. 

 

Figure 4.4 below provides the visualization as presented in the boxplots of the 

response variable in aggregate and segmented by Site ID. In the corner of the chart is the 

Coefficient of Variation, a widely used statistic in engineering for measuring the  
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variability and dispersion of a distribution. The coefficient of variation compares the ratio 

of the standard deviation to the mean, large values indicating that samples are far away 

from the mean(average), and smaller values indicating the opposite. The coefficient of 

variation is .71, since it is less than 1, the distribution is considered low variance. Figure 

4.4 also shows on average, site F has the largest response variable value, and site A has 

the smallest.  An interesting question derived from this plot is, “what characteristics of 

site F provide the reasoning for this”?   The Figure 4.4 plots also reveals generally an 

increasing pattern in the values of the response variable across sites from A to F, the 

trend abruptly stopping thereafter.  

 

 

Figure 4.4. Boxplots of the response variable in aggregate and segmented by Site ID. 

 

Another interesting breakdown of the response variable is within the context of 

the variables slope (X11) and vegetation density (X12). Both are plotted at Figure 4.5 

below.  As slope (X11) increases, the response variable, surface acres cleared, on 
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generally becomes less. For vegetation density(X12), the trend is different, more surface 

acres are cleared when the vegetation density is moderate. An interesting question 

derived from the plot would be “are different tools and resources used for moderate 

vegetation density that are not utilized when there is low or high vegetation density? Or 

is there a hidden variable to account for this variation, such as different contracting 

companies of different efficacies and skills being employed in the cases of low, moderate, 

and high vegetation densities?” 

 

 

Figure 4.5.  Boxplots of response variable by slope and vegetation density. 

 

4.1.4   Bivariate Plots and Distributions  

 The bivariate associations between all the predictor variables were analyzed using 

Pearson correlations. The Pearson correlation is used to measure the linear association 

between two variables (Pallant, 2016). As seen in Figure 4.6, the bivariate relationships 



www.manaraa.com

94 

 

of (𝑋2, 𝑋4) , (𝑋2, 𝑋3), (𝑋6, 𝑋8), 𝑎𝑛𝑑 (𝑋7, 𝑋8) are all extremely high, implying strong liner 

associations.  A scatter plot matrix of all the relationships can be found in Appendix B.  

Pearson and Spearman correlations were used to evaluate the bivariate 

relationship between each predictor variable and the response variable. Spearman 

correlation is used to measure monotonic relationships (Pallant, 2016). Both correlations 

can vary between -1.00 and +1.00, with 0.00 implying no correlation (Pallant, 2016). The 

Pearson correlations are summarized using a correlation table and heatmap in Figure 4.6. 

 

Figure 4.6.  Pearson correlations of the predictor variables with heatmap. 

The bivariate associations of predictor variable to response variable relationships 

are provided in Appendix H,  for both Pearson and Spearman correlations. The heatmaps, 

in which color intensities denote the strength of the association, provide a quick way to 
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find and locate the strongest bivariate associations. To constrain the total range of 

possible color intensities, the absolute values of the correlations were used. Therefore, all 

associations now fall within the interval [0,1], as opposed to the original interval [-1,1]. 

Most of the predictor variables have strong associations with the response variable. As 

expected, the highly collinear variables (𝑋6, 𝑋7, 𝑋8) 𝑎𝑛𝑑 (𝑋2, 𝑋3, 𝑋4) all have similar 

strength in their associations with the response variable. 

 Scatter plots for each predictor–response combination can be found in Appendix 

C.  These scatter plots also show density estimation; thus, each scatter plot can also be 

regarded as a two-dimensional density plot.  The x-axis is the predictor variable, and the 

y-axis is the response variable.  The contours represent the probability density. Each 

contour is a probability density value and any point on the contour is inferred to have that 

same probability density.  Any point inside the contoured region is inferred to have a 

smaller probability density than that which the contour line represents; whereas, any 

point out of the contoured region is inferred to have a greater probability density than that 

of the contour lines. These plots therefore provide a sense of density in a two-

dimensional space.   

Lastly, as one final step in the preprocessing process, all the simple linear 

regressions between each predictor variable and the response variable were calculated. 

The results of these simple linear regressions can be found in Figure 4.7a. through Figure 

4.7c., and Appendix F.  
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Figure 4.7a. Simple linear regression for predictor X1, X2, X3, and X4 with response variable. 

      

Figure 4.7b.  Simple linear regression for predictor X5, X6,  and X7 with response variable. 



www.manaraa.com

97 

 

 

This was a useful exercise in graphically examining the individual bivariate 

relationships between each of the predictor variables and the response variable. 

Additionally, it was useful in locating and identifying potential bivariate outliers. 

For example, in the simple linear regression plot where Y: Surface Acres Cleared 

is regressed on x9: Quantity of MEC items, there is a case with an extreme value 

of MEC 

      

   
Figure 4.7c.  Simple linear regression for predictor X8, X9, X10, X11, X12, and 

 X13 with response variable. 
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4.1.5   Preprocessing - Binning of Predictors x10 and x9  

 The predictor variables 𝑋9 and 𝑋10 have large spread and variance as determined 

by the graphs in Figure 4.8 and 4.9. Both variables have Coefficients of Variation greater 

than 1, suggesting high variance. The univariate distributions which lacked symmetry 

were highly skewed. During the preprocessing state right before model building, both 

these predictor variables underwent a binning procedure. Each predictor was binned one 

of five discrete bins. The discretization into five bins was chosen based off quantile 

ranges. Table 4.2 shows the range of values that characterize each bin and the frequencies 

of records in each of the bins. Based on the frequency percentages in Table 4.2, the data 

is approximately evenly dispersed. Table 4.2 shows the original distribution of the 

continuous variable, and then the distribution after binning into discrete values. The 

coefficient of variation, which is the ratio of standard deviation to the average, is also 

plotted. The difference between pre-binning and post-binning coefficients of variation 

indicate stabilization of variance. 

 

 

Figure 4.8. Original distribution (left) and distribution after Binning (right). 
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Figure 4.9. Original distribution (left) and distribution after Binning (right). 

 

Table 4.2.  Frequency Table After Binning 

 

 

 

4.2   Part 2: Model Selection and Validation 

The final model was chosen based on the results from the variable selection 

procedure Best Subsets Selection, plus some additional improvements. Best Subsets 

Bins Frequency % Frequency

(0 , 1548.6] 1 30 20.13%

(1548.6, 4000.0] 2 32 21.48%

(4000.0 , 9090.0] 3 27 18.12%

(9090.0, 23768.0] 4 31 20.81%

(23768.0, 129100.0] 5 29 19.46%

Grand Total 149 100.00%

X9: # OFMEC/MPPEH/RRD/MD/ ITEMS

Bins Frequency % Frequency

(0,3180] 1  30 20.13%

(3180, 8377.4] 2 30 20.13%

(8377.4, 16612.4] 3 29 19.46%

(16612.4, 44433.4] 4 30 20.13%

(44433.4, 94296.0] 5 30 20.13%

Grand Total 149 100.00%

X10: SCRAPLBS
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selection applies equally well to scenarios of both collinear and noncollinear data 

(Chatterjee & Hadi, 2012). The variable selection procedure Best Subsets Selection, 

which evaluates all the possible equations evaluated on different subsets of the predictor 

variables, was optimized for 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 values, meaning that the procedure sought to 

maximize 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 values. The SAS output of that procedure can be found in 

Appendix J. An efficient way of using the results from the SAS Best Subsets procedure 

that evaluates all possible variable combinations is to choose the best three based on 

specific criteria. These top three choices represent initial candidate models which should 

further be examined by checking to see if they do not violate the key assumptions of the 

linear model (Chatterjee & Hadi, 2012). Among the three top performing candidate 

models in Table 4.3, all of which have extremely similar 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 values, we will 

choose the top model, since not only does it have the largest 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 value, but it 

also has the lowest Bayesian Information Criterion (BIC) score, and is more 

parsimonious than the other two candidates. “The BIC will tend to take on a small value 

for a model with a low-test error“ (James et al., 2013, p. 212). 

 
Table 4.3.  Top 3 Candidate Models Chosen by Best Subsets Selection 

 

 The top model utilizes 8 predictor variables while the other two models were 

fitted on data consisting of nine predictor variables. Since inference and using the 

regression equation as a tool for modeling a complex process is an important goal of the 

Model

Index

Number in

Model

Adjusted

R-Square
R-Square BIC MSE

Root

MSE
Variables in Model

1 8 0.7667 0.7793 194.5203 3.399339 1.84373 x1 x2 x4 x6 x10 x11 x12 x13

2 9 0.7665 0.7807 195.8791 3.402179 1.8445 x1 x2 x3 x6 x8 x10 x11 x12 x13

3 9 0.7665 0.7807 195.8828 3.40228 1.844527 x1 x2 x3 x6 x7 x10 x11 x12 x13
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praxis, we will adhere to the principle of parsimony. To adhere to the principle of 

parsimony, it is suggested that the process be described in as few variables as possible 

since it provided easier interpretation (Chatterjee & Hadi, 2012).  

The initial chosen subset of predictor variables was: 𝑋1 – Quantity of MEC 

WRKDAYS, 𝑋2 - Total MEC SITE Hrs, 𝑋4 - Quantity of UXOTECH, 𝑋6 - Quantity of 

VEGTECH, 𝑋10 - SCRAPLBS, 𝑋11 - SLOPE, 𝑋12 - VEGDEN, and 𝑋13 - Quantity of 

VEGACRE Cleared. This was used as the initial model, which we improved on 

significantly after a few adjustments were made. The specific steps undertaken to derive 

the final model include: 

1.  The variance inflation factor (VIF) scores of the predictor variables determined 

multicollinearity from the original best subsets selection routine model. Since 

serious distortions and misrepresentations of model coefficients, t-Tests, and p-

values can be introduced into the analysis when collinear or multi-collinear data is 

present, one of two recommended approaches is to break down the collinearity of 

the data by deleting offending variables (Chatterjee & Hadi, 2012). This issue was 

handled and resolved by removing the predictor, 𝑋4 - Quantity of UXOTECH, 

whose specific VIF score was 23.35. The entire table of VIF scores can be found 

in Appendix L. 

2. A new regression equation was fitted omitting, 𝑋4 - Quantity of UXOTECH. 

Therefore, new, and final model is characterized as the subset of predictors, 𝑋1 − 

MEC Workdays , 𝑋2 − Total MEC Site Hrs , 𝑋6 −  Quantity of VEGTECH, 𝑋10 − 

Quantity of Scrap Lbs  , 𝑋11 -  Slope , 𝑋12 − Vegetation Density, 𝑋13 − Quantity 
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of VEGACRE Cleared, predicting the response variable Y, number of surface 

acres cleared. 

The results of the overall regression model were significant using a rejection cutoff of 

p = .05, F(7,141) = 63.55, p < .001, R2 = 0.76. The null hypothesis that all coefficients are 

zero, and hence the model has no explanatory power in modeling the variation of the 

response variable, is rejected due to a p-value less than the significance level, .05. The 

alternative hypothesis is accepted. The full results of the regression model are further 

expounded upon in the Hypothesis Resolution section. 

4.2.1 Assumption Testing and Residual Analysis 

 The set of predictor variables for the final model include 𝑋4 - Quantity of 

UXOTECH. Therefore, new, and final model is characterized as the subset of predictors,  

 𝑋1 − MEC Workdays, 𝑋2 − Total MEC Site Hrs, 𝑋6 −  Quantity of VEGTECH, 𝑋10 − 

Quantity of Scrap Lbs, 𝑋11 -  Slope, 𝑋12 − Vegetation Density, 𝑋13 − Quantity of 

VEGACRE.  Model validation was performed by testing the key assumptions of the linear 

regression. These include linearity in the relationship between the predictors and response  

variable, normally distributed errors, independence of errors.  Additionally, 

multicollinearity between the predictor variables was examined, and measure of influence 

were calculated on the errors.  

The assumption of normality was assessed using a histogram and normal 

probability plot of the residuals, as shown in Figure 4.10. The histogram presents data 

generally following the normal bell curve, and data points closely followed the 

theoretical normality (diagonal) line in the probability plot, indicating that the assumption 

of normality was met. 
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Figure 4.10. Histogram and normal probability plot of the residuals. 

The linearity and homoscedasticity assumptions of a linear regression model were 

assessed using a scatterplot of model residuals and predicted values, as seen in Figure 

4.11. The data generally appears randomly and equally distributed, but with some slight 

fanning and bowed pattern. However, the data does not show an extreme curvilinear 

trend, so linearity in the relationship between the predictor variables and the response 

variable is assumed. Validating the assumption of constant variance of the errors 

(homoscedasticity) based on Figure 4.11, is more ambiguous. Therefore, as a follow up, 

Bartlett’s Test was run in SAS to assess the homoscedasticity assumption. The 

justification for the use of Bartlett’s Test was because the errors are normally distributed. 

Using the standard cutoff of p=.05, the Bartlett’s test result was not significant, p = .069, 
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indicating that homoscedasticity can be assumed. The residuals are approximately 

constant, not significantly growing larger as a function of the predicted values. 

 

Figure 4.11. Residuals vs Predicted (Fitted) Values Plot & 4-18-2 Observed vs Fitted Values. 

Table 4.4. SAS Output Bartlett’s Test on Model Residuals 

 

The assumption of statistical independence of the errors (i.e. no correlation 

between consecutive residuals) was assessed using an Index Plot of the residuals and the 

Durbin-Watson statistic. The Durbin-Watson statistic for this data, which should be near 

2.00 to indicate absence of autocorrelation (Pallant, 2016). Both the Durbin-Watson 

statistic and the Index Plot of the residuals in Figure 4.12 suggests that some degree of 

autocorrelation is present. The index plot shows residuals that are not randomly and 

symmetrically distributed around zero. “Large positive errors are followed by other 

positive errors, and large negative errors are followed by other negative errors” 

(Chatterjee & Hadi, 2012, p. 209).  This is not a major case of autocorrelation, as Durbin 

Watson statistics well below 1.0 usually indicate a fundamental structural problem to the 

Source DF Chi-Square Pr > ChiSq

Groups_Median_Split 1 3.289536461 0.0697

Bartlett's Test for Homogeneity of loss Variance
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model (Regression diagnostics:  testing the assumptions of linear regression and the 

Durbin-Watson statistic of the model is only 1.043 (Duke University, 2015) .  

 

 

Figure 4.12.  Index plot of standardized residuals. 

Multicollinearity was assessed by examining the Variance Inflation Factors 

(VIFs) of the final model. A VIF score more than 10 is an indication that collinearity is 

present and may be causing issues with the accuracy of estimated regression coefficients 

(Chatterjee & Hadi, 2012). No VIF values exceed 10, therefore absence of 

multicollinearity was confirmed using VIF values, as seen in Table 4.5 below. 

There is an ongoing debate in literature as to under what circumstances should 

outliers be dropped from the model. Some say only if it’s obvious there were data entry 

errors. Some say any time it appears they are an extreme case and might be influencing 

your regression line as a source of bias (Field, 2013). 

 



www.manaraa.com

106 

 

Table 4.5. Final Model VIF Scores 

Variance Inflation Factors for X1_MEC_WRKDAYS, X2_Total_MEC_SITE_Hrs, 

X6_of_VEGTECH, X10_SCRAPLBS, X11_SLOPE, X12_VEGDEN, and 

X13_of_VEGACRE_Cleared 

Variable VIF 

X1_MEC_WRKDAYS 1.64 

X2_Total_MEC_SITE_Hrs 3.00 

X6_of_VEGTECH 4.52 

X10_SCRAPLBS 1.20 

X11_SLOPE 1.27 

X12_VEGDEN 1.36 

X13_of_VEGACRE_Cleared 2.64 

 

Influential points, of which if deleted will cause substantial changes in the fitted 

model. It is very important to identify influential observations if they exist in the data 

(Chatterjee & Hadi, 2012, p. 109).  The measure of influence is Cook’s Distance, and 

each observation of Cook’s Distance can be found in Figure 4.14, the index plot. None of 

the specific cases have cook’s distance values that exceed 1, however case number 67 

and 56 are distanced from the others, having cook’s distance value around .08.  Figure 

4.13 shows the outlier and leverage diagnostics for the response variable, number and 

rate of surface acres cleared of munitions and munitions related debris. It shows scatter 

plot of the studentized residuals (y-axis) and leverage scores (x-axis) for each case. “In 

general, studentized residuals are preferable to standardized residuals for purposes of 

outlier identification” (Williams, 2016, p. 5). Influential observations are cases with both 

high leverage and high studentized residuals of the response variable. Figure 4.14 shows 

no cases which warrant the status of influential observation, however case number 57 is 

close. 
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Figure 4.13. Outlier and leverage diagnostics for response Variable Y. 

 

Figure 4.14. Cook’s distance for response Variable Y, number, and rate of surface acres  

cleared. 
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4.2.2   Model Fit 

The error framework is provided in Table 4.6.  This includes (1) measures of total 

variation of the response variable explained by model (i.e. 𝑅2), (2) error estimates on the 

data used to fit the model, and (3) estimates of generalization by indirectly estimating test 

error but penalizing the model for overfitting and size. 

The regression results from fitting the model to the data are given in Table 4.6 and 

Table 4.7.  𝑅2, the proportion of variation in the response variable, number of surface 

acres cleared, explained by the variability in the predictor is 75%. Since the results of 𝑅2 

can be misleading, used instead is the more useful metric 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2, which is the 

amount of variation in the response variable explained by the predictor variables when 

 

Table 4.6. Performance Metrics for Final Model 

Performance Metrics 

Final Model Predictors x1,x2,x6,x10,x11,x12,x13 

R-Squared 0.759 

Adjusted R-Squared 0.747 

Mean Squared Error 3.681 

Root Mean Squared Error 1.919 

Mean Absolute Deviation 1.504 

Predicted Residuals Error Sum of Squares 

(PRESS) 
580.1020 

Mean of PRESS 3.8933 

Bayesian Information Criterion 225.98 
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Adjusting or penalizing for inclusion of variables that either do not or only 

trivially improve the existing model (James et al., 2013). When adjusted for the number 

of predictor variables in the model to prevent overfitting, the total variation of the 

response variable explained by the model is 74%.  

 Based on the Root Mean Squared Error (RMSE), the error on average was 1.91 

units from the response variable. The Mean Absolute Deviation, which is another popular 

statistic used in forecasting and prediction is 1.5, suggesting that the forecasting error is 

on average 1.5 units from the response variable.  

It is important to note, that the Root Mean Squared Error (RMSE) and Mean 

Absolute Deviation statistics in Table 4.6 were calculated for the original data the model 

was constructed on. Since the 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2, which looks at variance explained, and the 

RMSE were calculated from the data used to construct the model, both run the risk of 

being overly specific to the exact dataset being used, the Bayesian Information Criterion 

(BIC) score is also reported. BIC, which uses the model size to adjust the training error, 

provides an indirect estimate of generalizability (James et al., 2013) for the final model is 

225.98. 

The Predicted Residual Error Sum of Squares (PRESS) statistic of the final 

model, which is a model validation statistic that provides a summary of predictive ability, 

is 580.101. The average of the PRESS statistic for the final model is 3.893. Both the 

PRESS statistic and the average of the PRESS statistic metrics are reported by the SAS 

statistical software package and can be seen in Table 4.6. 
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4.3   Part 3: Analysis of The Final Model 

 The results of the overall regression model were significant using a rejection 

cutoff of p = .05, F(7,141) = 63.55, p < .001, R2 = 0.76. The null hypotheses may be 

rejected. The model does have explanatory power in modeling and describing the 

response variable. The alternative hypothesis that at least one of the predictor variables 

has a non-zero coefficient value is accepted.  

 Since the magnitudes of the regression coefficients depend on each variables unit 

of measurement (Chatterjee & Hadi, 2012), both the original regression coefficient and 

the standardized regression coefficients are reported. Table 4.7 reports both the 

coefficients in their original units, and also reports the standardized coefficients in their 

unitless form. Table 4.8 provides an additional upper and lower bound confidence 

interval for each of the parameter estimates.   The following coefficient analysis is based 

on the standardized coefficients. Using standardized coefficients represents the marginal 

effects of a predictor variable in standard deviation units (Chatterjee & Hadi, 2012).  

The variables 𝑋1 − MEC Workdays and 𝑋10 − Quantity of Scrap Lbs   were not 

statistically significant predictors of the response variable, number of surface acres 

cleared. For the predictor 𝑋2 − Total MEC Site Hrs, which is statistically significant, for 

everyone standard deviation increases in Total MEC Site Hrs Worked, the model predicts 

a 0.217 increase in standardized units of surface acres cleared, the model predicts a 0.217 

increase in standardized units of surface acres cleared.  

The variable, 𝑋6 −  Quantity of VEGTECH is a significant predictor: for everyone 

standard deviation unit increase in Number of VEGTECH, the model predicts a 0.303 

increase in standardized units of surface acres cleared as shown in Table 4.7.  
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The variable 𝑋11 -  Slope is a significant predictor: for every one standard 

deviation unit increase in slope, the model predicts a 0.29 decrease in standardized units 

of surface acres cleared as shown in Table 4.7.  

The variable 𝑋12 − Vegetation Density is a significant predictor: for every 1 

standard deviation unit increase in vegetation density, the model predicts a 0.107 

decrease in standardized units of surface acres cleared as shown in Table 4.7.  

Table 4.7.  Standardized Coefficient Estimates 

Variable 
Parameter 

Estimate 
Standardized 

Estimate 
Standard 

Error t Value Pr > |t| 

Intercept 1.6999 0.0000 1.2341 1.3774 0.1706 

X1_MEC_WRKDAYS 0.3770 0.0716 0.2784 1.3543 0.1778 

X2_Total_MEC_SITE_Hrs 0.0010 0.2174 0.0003 3.0370 0.0028 

X6_of_VEGTECH 0.0785 0.3038 0.0227 3.4570 0.0007 

X10_SCRAPLBS 0.1725 0.0644 0.1213 1.4228 0.1570 

X11_SLOPE -1.9023 -0.2933 0.3021 -6.2958 0.0000 

X12_VEGDEN -0.4256 -0.1080 0.1897 -2.2429 0.0265 

X13_of_VEGACRE_Cleared 0.3846 0.3722 0.0694 5.5412 0.0000 

 

Table 4.8. Results of Final Model 

Results for Linear Regression with X1_MEC_WRKDAYS, X2_Total_MEC_SITE_Hrs, 

X6_of_VEGTECH, X10_SCRAPLBS, X11_SLOPE, X12_VEGDEN, and 

X13_of_VEGACRE_Cleared predicting Y_of_SURFACRE_Cleared 

Variable B SE 95% CI β t p 

       

(Intercept) 1.70 1.23 [-0.74, 4.14] 0.00 1.38 .171 

X1_MEC_WRKDAYS 0.38 0.28 [-0.17, 0.93] 0.07 1.35 .178 

X2_Total_MEC_SITE_Hrs 0.00 0.00 [0.00, 0.00] 0.22 3.04 .003 

X6_of_VEGTECH 0.08 0.02 [0.03, 0.12] 0.30 3.46 < .001 

X10_SCRAPLBS 0.17 0.12 [-0.07, 0.41] 0.06 1.42 .157 

X11_SLOPE -1.90 0.30 [-2.50, -1.30] -0.29 -6.30 < .001 

X12_VEGDEN -0.43 0.19 [-0.80, -0.05] -0.11 -2.24 .026 

X13_of_VEGACRE_Cleared 0.38 0.07 [0.25, 0.52] 0.37 5.54 < .001 
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Finally, the variable 𝑋13 − Quantity of VEGACRE cleared is a significant 

predictor: for every 1 standard deviation unit increase in the amount of vegetation acres 

cleared, the model predicts a 0.372 decrease in standardized units of surface acres cleared 

as shown in Table 4.7. 

4.4   Part 4: Results Summary   

This chapter detailed the results of the methodology analyses presented in Chapter 

3. Exploratory data analysis was performed. Model fitting procedures converged upon a 

final model, which consisted of ,  𝑋1 − MEC Workdays , 𝑋2 − Total MEC Site Hrs , 𝑋6 −  

Quantity of VEGTECH, 𝑋10 − Quantity of Scrap Lbs  , 𝑋11 -  Slope , 𝑋12 − Vegetation 

Density, 𝑋13 − Quantity of VEGACRE predicting the Y: Number of surface acres 

cleared. Results indicated that the overall model was significant, and that all the above  

 

predictors were statistically significant except for 𝑋1 − MEC Workdays and 𝑋10 − 

Quantity of Scrap Lbs. The final unstandardized regression equation is:  

Y = 1.70 + 0.3770*X1 + 0.0010*X2 + 0. 0785*X6 + 0. 1725*X10 - 1. 9023*X11- 

0. 4256*X12 + 0. 3846*X13.                                                                                              

   

 The results and discussion are discussed in more detail in Chapter 5 along with 

the Practical Application of the model and conclusion of the study.  
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Chapter 5: Discussion and Conclusions 

 

5.1   Introduction 

The research presented in this praxis study addresses two important research 

questions, (1) Will implementation of a predictive analytics model assist in identifying 

the critical risk factors influencing the level of effort in the decontaminating efforts and 

(2) Will use of the predictive analytics model better predict the levels of effort required 

for each decontamination activity? This research approaches the unique complexity of 

munitions response actions by presenting a multivariate model which uses a wide range 

of inputs to model the variation in the response variable, Number of surface acres 

cleared. This approach consisted of using actual field data collected from various sources 

specific to surface clearance operations conducted at a large and heavily contaminated 

military range impact area.  Sources of data consisted of: (1) field operational 

performance charts, (2) surface clearance production tables, (3) monthly and quarterly 

field operational summary reports, (4) After Action Reports, (5) weekly field summary 

reports, and (6) production maps.  The data was used to construct the linear regression 

model which estimates the quantity and rate of surface acres cleared of munitions items 

and munitions-related contamination.  The surface area cleared of munitions items and 

munitions-related contamination were representative samples of munitions response sites 

located within a 3500-acre former military live impact area used in the past for air to 

ground, ship to shore, and ground to ground live fire training.  The large impact training 

area was used for 60 years of live fire training and severely and grossly contaminated 



www.manaraa.com

114 

 

with tens of thousands of live and inert munitions items, hundreds of targets, and tens of 

millions of pounds of munitions related debris and cultural debris.   

The null hypothesis, which states there is no significant relationship between the 

predictors and the response variables, suggests that the constructed model is no better 

than the aggregated average of the response variable Y, number of surface acres cleared, 

was tested, and rejected. The alternative hypothesis that states that at least one of the 

predictors has a significant relationship with the response variable was accepted, 

suggesting the model does have an explanatory and predictive ability.  

While these results are clarifying, it is essential that the reader understand that 

there is no quantifiably unique best set of variables, since there are multiple purposes and 

applications in which a regression equation can be utilized. The model presented from the 

research utilizes the following predictor variables described in Appendix D and Table 

3.2, [ 𝑋1: MEC Workdays, 𝑋2: Total MEC Site Hrs, 𝑋6: Quantity of VEGTECH, 𝑋10: 

Quantity of Scrap Lbs, 𝑋11: Slope, 𝑋12: Vegetation Density, 𝑋13: Quantity of VEGACRE 

Cleared], to predict the response variable Y, the number of surface acres cleared.  

However, this by no means states that other predictors cannot be used to model the 

variation in the response variable, number of surface acres cleared.  “A regression 

equation can be used for several purposes. The set of variables that may be best for one 

purpose may not be the best for another. Since there is no best subset of variables, there 

may be several subsets that are adequate and could be used in forming an equation” 

(Chatterjee & Hadi, 2012, p. 303). The subset of predictor variables used in the final 

model presented forth by the research was chosen based on:  
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1. The Best Subsets variable selection procedure which generated a list of 

candidate models based on the maximization of the criterion 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2.  

2. Adhering to the principle of parsimony, therefore attempting to describe the 

process under study in as few variables as possible while simultaneously 

ensuring a high amount of variation as possible in the response variable, the 

number of surface acres cleared, is accounted for. 

3. For candidate models with similar 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 values, utilizing information 

criterion such as the Bayesian Information Criterion (BIC) scores can be 

interpreted as a metric which tries to balance the demand for model accuracy 

and parsimony (Chatterjee & Hadi, 2012).  The BIC score will usually take on 

smaller values for models with better generalization performance (Hastie, 

2013).  

The initial results of the Best Subsets Selection procedure run in SAS were 

surprising. At least the top 10 chosen models were similar in their performance metrics 

and even more apparent for the top 3 candidate models. This suggests that numerous 

regression equations could have been used for the task of modeling and predicting the 

response variable Y, number of acres surface cleared.  This makes sense considering the 

strong bivariate Pearson correlations between predictor variables as seen in the 

correlation matrix. The argument of redundancy in the collected data is further supported 

by the extremely high variance inflation factor (VIF) scores for the estimated coefficients 

in the fully fitted model which includes ALL the predictor variables. The table containing 

the SAS output of the Best Subsets Selection procedure is in Appendix J, the figure 

containing all pairwise correlations is in Appendix G, and finally, the table containing the 
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results of the linear regression model containing the full set of predictor variables can be 

found at Appendix O and Appendix P.  

As stated above, the top ten choices for the Best Subsets variable selection 

procedure can be found in Appendix J.  As previously discussed, the entries are ordered 

in descending order based on the objective of maximizing 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2.  Amongst the 

list of candidate models, Model 1 was chosen as the base subset of predictor variables to 

improve upon.  Model 1 is the model which had the highest  𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 of all the 

candidate models and is the most parsimonious of the top five candidate models.  The 

chosen subset of predictors was later further augmented with the removal of predictor 

variable X₄: Number of UXO Techs/wk.  As previously mentioned, this exclusion was 

intended to remove the remaining multicollinearity that existed between predictors X₂ and 

X₄ (i.e., Total MEC Site Hrs. and Number of UXO Techs/wk).  Although predictor 

variable X₄ was eliminated, one can still calculate the number of UXO Techs required per 

week by calculating the number of Total MEC Site Hrs. per week required to achieve the 

number of surface acres cleared.   

It is important to clarify why Model 9 was not selected amongst the top ten 

candidate models since the subset of predictors is more parsimonious and produced a 

model with slightly lower BIC values than the chosen candidate, Model 1.  The 

performance metrics of all models were quite similar.  When looking at all models that 

have similar but slightly different performance values, it is important to also look at the 

difference in BIC Values as part of the decision process in selecting the candidate model.  

It may not be worth more than a bare mention when two candidate models have a 

difference in BIC values between 0-2 (Kass & Raffery, 1995).  Whereas, when the 
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difference in BIC values between two models is in the range of 2-6 and 6-10, this is 

strong evidence for not selecting the model with the higher BIC value, even though it had 

a higher 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 value (Kass & Raffery, 1995).  The difference in BIC scores 

between Model 1 and Model 9 is less than 2. Additionally, candidate Model 1 includes 

the predictor variable X₁₂: Vegetation Density,  which is the average percentage of 

vegetation and tree canopy density covering the site area where vegetation and surface 

clearance activities are performed.  Within regression analysis, there are specific cases 

where it is advantageous to include certain predictors, even if they are determined to be 

insignificant or excluded from a variable selection procedure.  For example, age in 

medical studies, race and socioeconomic status in income and education studies are all 

such examples. Vegetation density is an important predictor variable due to the additional 

resources and time expended in clearing moderate to high density areas as compared to 

low or non- vegetated areas. It is likely that low vegetated areas may not even be a 

concern where no time or resources would even be expended on vegetation clearance.   

Therefore, caution should be applied when determining if the vegetation density predictor 

variable should be excluded from the regression analysis model unless the vegetation 

density is of little concern regarding the impact on surface clearance activities.  

Therefore, after balancing fit statistics such as 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2, the concept of model 

parsimony, and relative importance of some of the predictor variables included in Model 

1 that were not included in the subset of predictors for candidate Model 9, the author 

arrived at the conclusion that candidate Model 1 is slightly superior to Model 9 and the 

other candidate models.  However, for future research it would be interesting and prudent 
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to explore how Model 9 and the other models may perform in a production environment 

with slight variations in the variable units.  

5.2   Research Question 1   

  The first research question is concerned with using the regression equation and 

results to describe the complex process for modeling the initial operational phase of a 

munitions response removal action, a Surface Clearance Removal Action.  In this 

instance, the research results and regression model can be used both as: 

1. A tool for inference and control. The regression equation is used to describe 

the interaction between the predictor variables described in Appendix D and 

Table 3.2:  𝑋1: MEC Workdays, 𝑋2: Total MEC Site Hrs, 𝑋6: Quantity of 

VEGTECH, 𝑋10: Quantity of Scrap Lbs, 𝑋11:  Slope, 𝑋12: Vegetation Density, 

𝑋13: Quantity of VEGACRE Cleared, and the response variable Y, number of 

surface acres cleared.   

2. A tool to determine the magnitude by which to increase a single predictor 

variable or set of predictor variables to arrive at a specific value of the 

response variable.  

Both cases mentioned above rely on a model which accounts and explains for as 

much variation as possible in the response variable while also simultaneously being 

parsimonious and having small standard errors for the coefficient estimates. The key 

finding is that caution should be used if using the model suggested by the research study 

as a tool for inference and control. The final model posited by the study does not contain 

any multicollinearity and has validated two key assumptions of normally distributed 

errors, constant variance (i.e., homoscedasticity) of the errors, and linear relationship 
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between the predictors and response variable. However, the model does violate the 

assumption of uncorrelated errors. The study results show mildly correlated errors 

(autocorrelation). 

 Adjacent errors that are correlated with each other can occur for several reasons. 

The most plausible is that “observations sampled from adjacent experimental plots or 

areas tend to have residuals that are correlated since they are affected by similar 

external conditions” (Chatterjee & Hadi, 2012, p. 209).  The second most plausible 

explanation for the autocorrelation is that there is some predictive information present 

that the current model is unable to capture. This generally results in biased regression 

coefficients due to omitted variable bias, and potential spurious correlations. The 

exclusion of relevant variables, whether intentional or unintentional can bias the 

estimated regression coefficients for the variables included in the model (Northwestern, 

2015).  

Autocorrelation can appear because of key predictor variables having been 

omitted form the right-hand side of the regression equation (Chatterjee & Hadi, 2012). 

Therefore, it is not the autocorrelation alone that is biasing (i.e., overestimating or 

underestimating) the regression coefficients themselves. The autocorrelation does 

however affect the regression coefficients in the sense that they no longer have minimum 

variance, so they may be further from the true value (Chatterjee & Hadi, 2012) 

 Obviously, this poses interpretability and inferential concerns since the effects of 

a predictor variable can now be overestimated or underestimated. A sub research question 

was concerned with discerning which predictor variables are critical factors influencing 

the level of effort needed for decontamination. As with the conclusion above, caution 
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should be exercised when using the model to determine which variables are the critical 

factors influencing the level of effort needed for decontamination. This is because the 

estimated regression coefficients for the final model proposed by the research study are 

no longer the best linear unbiased estimates. 

Some of my theoretical assumptions are not accurately reflected in the research 

results. For example, predictor variable, 𝑋9: (number of MEC/MPPEH/RRD/MD ITEMS) 

should have been significant since this variable, in a true practical sense, represents a 

significant portion of the predictor variables 𝑋3: the number of True MECHRS/Wk, and 

𝑋4: the number of UXO TECH/Wk in actual surface clearance operations.  One would 

assume that the predictor variable, 𝑋9: the number of MEC/MPPEH/RRD/MD/ITEMS, 

which represents the number of munitions and munitions related items cleared from the 

surface would have the same or more theoretical significance as predictor  𝑋10: 

SCRAPLBS, which represents the weight of all metallic debris cleared and collected from 

the site.  Since both predictor variables represented large quantities in the surface 

clearance operations requiring considerable amount of labor resources, one would 

postulate that predictor variables,  𝑋9: the number of MEC/MPPEH/RRD/MD/ITEMS, 

and 𝑋10:  SCRAPLBS, should relatively have the same significance in comparison.  

Considering that there are various reasons for which why the statistics may not be 

cohesive with theory, this provides an excellent opportunity for refining the data 

variables and data collection approach for further research.  A variable may not be 

significant for various reasons such as small sample size, collinearity, and lack of overall 

variation in the univariate distribution of the predictor variable.  Data is usually collected 

with the hope that there is enough variation and interesting information to determine how 
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changes in X affect Y. However, when there is lack of variation or action from one case to 

the next, then it can be argued that it will be difficult for any model to determine 

precisely how changes in X affect Y (Northwestern, 2015). The result is that in the model 

summary, some of the predictor variables, which may have theoretical importance and 

significance will not have any practical or statistical significance and may not be included 

in the final model. This is especially true when using a variable selection procedure such 

as Best Subsets, Stepwise, or Backward Elimination.  

5.3   Research Question 2  

The second research question is concerned with use of the regression equation as 

a tool for estimation and prediction of the response variable Y, number of surface acres 

cleared.  𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 and Bayesian Information Criterion (BIC) were used as proxies to 

estimate generalizability among a set of candidate models.  The first major advantage of 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2and BIC is that both statistics account for overfitting, which is when the 

model too closely models the random error component of the dataset that it was trained 

on (James et al., 2013). The second advantage of 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 and BIC is that both 

statistics can be used to compare nested and non-nested models of different numbers of 

variables.  

The final model posited by the research study is significant, offering significant 

improvements over a naïve average only model. For a more detailed comparison of the 

final model suggested by the research study which consist of the predictor variables,  𝑋1: 

MEC Workdays, 𝑋2: Total MEC Site Hrs, 𝑋6: Quantity of VEGTECH, 𝑋10: Quantity of 

Scrap Lbs, 𝑋11: Slope, 𝑋12: Vegetation Density, 𝑋13: Quantity of VEGACRE Cleared, and 

the naive model which uses the average of the response variable Y (i.e., average of the 
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number of surface acres cleared) to make predictions, readers can refer to Appendix M 

and Appendix N  

5.4   Hypothesis  

The Hypothesis was presented in Chapter One and presented below.     

• 𝑯𝟎:  Predictor (independent) variables (IV), 𝑋1 … . … 𝑋13, do not 

significantly predict the response (dependent) variable (DV) Y1. 

• 𝑯𝒂:  At least one predictor (independent) variable (IV), 𝑋1 …. 𝑋13, 

significantly predicts the response (dependent) variable (DV) Y1. 

The null hypothesis, which states there is no significant relationship between the 

predictors and the response variables, suggests that the constructed model is no better 

than the aggregated average of the response variable Y, number of surface acres cleared, 

was tested, and rejected. The alternative hypothesis, which states that at least one of the 

predictors has a significant relationship with the response variable, was accepted, 

suggesting the model does have an explanatory and predictive ability.  

While these results are clarifying, it is essential that the reader understand that 

there is no quantifiably unique best set of variables, since there are multiple purposes and 

applications in which a regression equation can be utilized. 

5.5.  Implications  

 Due to the final model violating certain fundamental assumptions of linear 

regression such as independent and uncorrelated errors, caution should be exercised by 

project managers, program managers, field supervisors, and decision makers attempting 

to use this model as a tool in predicting munitions surface clearance rates  to help support 

pre-bid decision making in acquisition opportunities, resource and operational planning, 
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management of on-going field operations for surface decontamination activities. The 

autocorrelation was not extreme enough to suggest an extreme misspecification of the 

model, however there is still enough autocorrelation to conclude that the estimated 

regression coefficients are no longer the best linear unbiased estimates. It was initially the 

goal of the praxis that project managers could use this research during munitions cleanup 

to adjust schedules. For whatever reason, the project managers would be able to use the 

model, adjusting its inputs to see how it would affect the project timeline. With this 

information project managers would have the ability to create a strategy more accurately 

for the task of either moving the managed project ahead of schedule, behind schedule, or 

right on schedule. 

5.6   Limitations of the Research  

The research praxis was limited by the modest sample size of data. The researcher 

recommends not to only expand the data collection process in amount of data collected, 

but also providing more consistency and altering the way the data is reported on summary 

files for the number of MEC/MPPEH/RRD/MD items and quantity of Scrap collected.  

Although there are unique and significant differences between other site locations, data 

collected from a host of other project sites may add more variation and presents the 

opportunity to improve the deterministic aspect of the model.  

The research also suggests for the collection and measurement of more variables. 

The study was limited in part due to the scope of the variables available for analysis. As 

mentioned previously, some autocorrelation was present in the model. The measurement 

of more variables would provide more information to the researcher in better 

understanding and perhaps circumventing a major reason for autocorrelation, omitted 
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variable bias. It is simple to speculate about other variables that may further explain the 

response variable, number of surface acres cleared, and if included in the model may 

remove the autocorrelation. The addition of a consistent approach regarding the 

quantification of MEC and Scrap Metal would be helpful.  MEC/MPPEH/MD is 

quantified by the number of items whereas Scrap and munitions related debris cleared is 

estimated by weight.  Both the number of items and weight of the items should be 

included for both categories to help support the consistency and measurement of 

manhours and labor required for clearing each item and weight.   To measure more data, 

a more modern suite of data collection and measurement tools will be needed to help 

support the prediction of clearance activities.  SERDP and ESTCP are actively engaged 

in developing and testing new detection and discrimination technology for subsurface and 

underwater clearance. The use of other surface detection and removal technology would 

be as useful and helpful as the subsurface technology in improving efficiency and 

reducing worker safety risks.   

 Finally, perhaps the most limiting aspect of the praxis study is the niche 

application of the research. The data was collected from numerous sites but within one 

large munitions response area with similar physical characteristics and high quantities of 

contamination which resulted in larger labor forces and total man hours worked.  The 

large quantities of contamination and larger work force used in this model may not be 

representative of other sites with less contamination levels and less vegetation removal.  

This poses some generalization problems for project managers and program managers 

working at other locations around the country or abroad.   
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5.7   Practical Application of the Predictive Model  

The practical application for this study and model is founded as an operational 

and financial risk management assessment tool to predict the number of acres cleared of 

munitions and munitions debris based on a level of resource effort, level of 

contamination, and physical site characteristics required to complete a Munitions 

Response Surface Clearance.  Munitions Surface Clearance presently is regulated 

following the EPA CERCLA process with requires a Remedial Investigation (RI) to 

determine extent of contamination, munitions risks, and hazard in the process.   

Typically, 3% to 10% of the area of a munitions response site is investigated during the 

CERCLA RI process.  The area percentages of the investigation depend on the size of the 

munitions response site, cost of the investigation, and historical information related to 

potential target impact areas, range fans, and firing positions.  The sampling percentage 

of larger areas are typically less because of the increased cost for sampling larger areas.  

Although these percentages fall within acceptable limits for collecting representative 

samples of a CERCLA investigation, they typically result in significant data gaps for 

estimating the quantities of munitions contamination and areal extent of contamination 

across the site.  Data gaps increase as the size of the site increases, especially for larger 

sites of a thousand or more acres.  The uncertainties of contamination levels increase the 

financial and operational risks for firms pursuing munitions response acquisition 

opportunities and for those already in the field implementing clearance operations at  

sites where the firm’s estimates were based on limited investigative data collected and 

provided in acquisition Request for Proposals (RFP’s).  Normal practice by munitions 

response firms offset the financial risk by applying contingency pricing for “known, 
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unknowns” and management reserves for “known, unknowns” thereby reducing the true 

competitiveness of a procurement where lowest price is an evaluation factor.   

A predictive model for munitions surface clearances based on historical 

information will benefit project managers and cost estimators by providing an initial basis 

of estimate adjusted by near or like site conditions.  A predictive model would aid in 

identifying various risk profiles moving forward through the cost estimating process 

thereby either increasing financial risk or reducing financial risk, which translates in 

contingency risk pricing which leads to increasing the costs and reducing competitiveness 

of the bidding firm.   Various risk profiles for the estimating process include variations of 

the predictor variables estimated to achieve completion of the surface clearance activities.  

Examples of predictor variables for munitions surface clearance include:  (1) quantities of 

munitions and munitions-related contamination, (2) amount of vegetation removal, (3) 

number and availability of labor resources, (4) specific site conditions and,  (5) estimated 

time to perform and complete surface clearance operations.  Additional predictor 

variables unique to the project site should also be assessed for future analysis. 

A predictive model is a dynamic tool that provides the parameters of a munitions 

site to be updated as the data is collected through the field execution of munitions 

response actions.  Data elements such as production data, and site conditions (munitions 

density, environmental consideration) would be used to further define the parameters 

moving forward in initial cost estimating, but also moving forward to assist in predicting 

the time and cost to complete during the execution of the munitions clearance operations 

so that operational and financial risks are effectively managed.  The use and application 

of the predictive model can aide both the client and munitions response firms when 



www.manaraa.com

127 

 

preparing estimates for modifications due to scope changes and scope growth during 

while in the field implementing the clearance operations.  In addition, project managers 

and field supervisors may use the model to aide in risk management decisions when 

forecasting the clearance rates based on labor resource changes between the time lapse of 

when the initial proposal was completed and the time of field implementation, thereby 

reducing schedule and financial risks. 

Additionally, a predictive model will assist project and program managers in 

managing risk.  The predictive model will provide the necessary data to perform a 

qualitative risk analysis of numerous sites (identifying individual project risks and 

numerically categorizing the risk) based on both the site density of contamination 

anticipated and typical historical site conditions.  It is anticipated that the predictive 

model will support quantitative risk analyses to assist in identifying production and 

resource concerns that impact the ability to predict project budget and overall cost to 

complete of a munitions clearance.   

5.8  Recommendations for Future Research 

As discussed in this chapter, it is recommended that further research be initiated 

to refine and include other variables related to surface clearance activities and explore 

other response variables that may be more significant in supporting the estimating 

forecasting of response actions, such as manhours per acre cleared.  Further research 

should include extensive examination of all possible models to ensure the selection of the 

best and final model that meet the performance metrics is achieved. In addition, further 

research in the application of a predictive model should focus on predicting the labor 

hours required to support and implement subsequent munitions response activities, such 
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as, subsurface clearance and digital geophysical mapping of subsurface anomalies and 

munitions items.  Designing an experiment to define and collect the necessary variables 

during current and future operations may contribute in supporting further research in 

forecasting other munitions response activities to help mitigate financial and operational 

risks.      
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Appendix A –  

Histograms of All the Univariate Distributions for Continuous Variables 
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Appendix B –  

Scatterplot Matrix of all Predictor Variables 
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Appendix C –  

Scatter Plots for All Predictor Response Variable Pairs 
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Scatter Plots for All Predictor Response Variable Pairs 
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Appendix D –  

List of Independent and Dependent Variables  

Variable 

ID 

Variable Name  Variable 

Type 

Definition 

Response (dependent variable:   

 

Y1 

Weekly Number of Surface 

Acres 

Continuous Number of acres surface cleared per week of 

munitions related contamination (MEC,  MPPEH, 

RRD, MD, metal scrap, targets, and cultural debris) 

Predictor (Independent) Variables:  Definitions 
Variable 

ID 

Predictor Variable Name   

ꓫₒ Site ID Scale Identification of Munitions Response Site 

ꓫ₁ MEC_WRKDAYS/WK Scale Weekly number of Field UXO Tech Days worked 

performing or supporting (QC, Demo, Safety, 

Supervision) surface clearance activities 

ꓫ₂ Total MEC-SITE-HRS/WK Scale Total number of weekly hours for UXO technicians 

performing all related surface clearance activities 

(supervision, quality control, safety, demolition, and 

final clearance) 

ꓫ₃ True MECHRS/WK Scale Weekly number of hours for UXO Technicians 

performing surface clearance activities within the 

grids and does not include average daily hours 

associated with travel time to site, daily safety 

briefings, daily site set up/close out, breaks, and 

lunch 

ꓫ₄ Num of UXOTECH/WK Scale Weekly number of UXO Technicians performing 

surface clearance activities (includes supervision, 

quality control, safety, all field technicians) 

ꓫ₅ VEG_WRKDAYS/WK Scale Total number of workdays per week for Vegetation 

Removal Technicians performing vegetation 

clearance (includes supervision and UXO 

Technician oversight) 

ꓫ₆ Num of VEGTEC/WK Scale Weekly number of Vegetation Removal Technicians 

performing vegetation clearance 

ꓫ₇ TOTAL_VEG SITE HRS/WK Scale Total number of weekly hours for Vegetation 

Removal Technicians performing vegetation 

clearance 

ꓫ₈ True VEGHRS/Wk Scale Weekly number of hours for Vegetation Removal 

Technicians performing vegetation clearance 

activities within the grids and does not include 

average daily hours associated non-grid work as 

indicated above in X5. 

ꓫ₉ Num OF 

MEC/MPPEH/RRD/MD 

_ITEMS 

Scale Weekly estimated number of individual MEC, 

MPPEH, RRD, and MD discovered and cleared from 

the surface area 

ꓫ₁₀ SCRAPLBS Scale Weekly Estimated weight of metal scrap, targets, and 

cultural debris removed from surface for each acre 

on weekly basis. 

ꓫ₁₁ SLOPE Scale Average estimated slope of topography within sites 

completed on weekly basis (0=flat; 1=low slope;  

2=moderate slope; 3=steep slope) 

ꓫ₁₂ VEGDEN Scale Average percentage of vegetation and tree canopy 

density within site area worked ( 1= low density; 2= 

moderate density; 3 = heavy density). 

 ꓫ₁₃ Num of VEGACRE Cleared/Wk Scale Number of vegetation acres cleared per week within site 

area proceeding surface clearance activities. 
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Appendix E –  

 Example of Compilation of Data Variables 

 

  

SITEID Week #

X1 MEC 

WRKDYS/

WK

X2 

TOTMECH

RS/WK

X3 

TRUEMECH

RS/WK

X4 

NUMUXOT

ECH_WK 

X5 

VEGWRKD

YS_WK

X6 

NUMVEGT

ECH_WK

X7 

TOTVEGHR

S_WK

X8 

TRUEVEGH

RS/WK

X9 

NUMMEC/

MPPEH/RR

D/MD/ITE

MS

X10 

SCRAPMET

WT X11 SLOPE

X12 

VEGDEN

X13 

NUMVEGA

C_CLR/WK

Y1 NUM SURF AC 

CLR_WK

VAL-MK 1 3 96.19 78.19 3 1 4 20.17 12.17 81 1062 2 1 0.25 2.15

VAL-MK 2 3 120.52 66.03 6 1 6 60.2 48.2 46 2889 2 1 1.25 2.25

VAL-MK 3 1 30.7 31.01 5 3 5 56.79 26.79 15 1238 2 2 0.75 0.75

VAL-MK 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

VAL-MK 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

VAL-MK 6 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0

VAL-MK 7 3 128 89 7 2 5 74.5 54.5 56 1534 2 2 1.275 1

VAL-MK 8 4 170 138 4 3 6 170.3 146.3 35 2070 2 3 0.9 1.05

VAL-MK 9 4 177 129 6 4 4 112.8 80.8 67 3445 2 2 1.3 2.25

VAL-MK 10 4 203 155 6 4 5 157.5 117.5 125 4557 2 2 2.5 2.35

VAL-MK 11 3 116 86 5 3 5 131.3 101.3 47 928 2 2 2.5 2.275

VAL-MK 12 4 224 176 6 1 3 45.3 39.3 156 2982 1 3 0.4 3.275

VAL-MK 13 3 185 155 5 0 0 0.0 0.0 202 2295 2 0 0 0.975

VAL-MK 14 2 130 102 7 0 0 0.0 0.0 105 9019 2 0 0 0.925

VAL-MK 15 4 288 232 7 0 0 0.0 0.0 238 16041 2 0 0 0.787

VAL-MK 16 4 226 178 6 2 6 63.3 39.3 59 18910 2 2 0.75 1.725

VAL-MK 17 3 308 278 10 1 5 51.0 41.0 109 15110 2 3 0.25 1.875

VAL-MK 18 4 297 265 4 3 5 42.4 12.4 128 12602 2 2 1 2.57

VAL-MK 19 4 342 286 9 4 4 101.6 69.6 302 21006 1 2 1.5 3.05

VAL-MK 20 3 302 278 10 2 5 73.1 53.1 239 20610 2 3 0.75 2.08

VAL-MK 21 3 280 244 9 2 6 58.5 34.5 191 19813 2 2 1.5 2.24

VAL-MK 22 4 359 309 9 3 6 118.4 82.4 162 14763 2 3 0.75 2.6

VAL-MK 23 4 376 336 9 3 5 146.0 116.0 344 18567 2 3 3 3

VAL-MK 24 4 423 393 10 2 6 132.9 116.9 203 26349 2 3 0.5 3.11

VAL-MK 25 4 322 282 8 0 0 0.0 0.0 82 17775 2 1 0 1.67

VAL-MK 26 4 412 371 10 1 5 45.0 35.0 86 23000 2 1 0.25 1.96

VAL-MK 27 4 425 377 10 3 4 103.5 67.5 108 26486 2 2 1.4 2.09

VAL-MK 28 4 187 155 4 3 4 90.72 66.72 37 11266 2 2 2.25 1.01

VAL-MK 29 5 462 422 9 1 5 49.87 39.87 108 24305 1 2 0.75 3.11

VAL-MK 30 4 220 180 6 0 0 0 0 33 5191 2 2 0 1.36

VAL-MK 31 2 151 127 7 5 5 205.83 155.83 57 15750 2 2 0.75 0.75

VAL-MK 32 2 40 24 2 3 4 82.2 58.2 0 8 2 2 2.7 0.5
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Appendix F –  

Simple Linear Regressions for All Predictor Response Variable Pairs  
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Simple Linear Regressions for All Predictor Response Variable Pairs 
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Appendix G –  

Pearson and Spearman Pairwise Correlations for All Predictor Variables 
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Appendix H –  

Pearson and Spearman Correlations for All Predictor Response Variable Pairs 
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Appendix I –  

Boxplots of All Continuous Variables Segmented by Site ID 
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Appendix J –  

SAS Subsets Selection Top 10 Optimized for Adjusted R-Squared 

 

 
  

 

 

 

 

 

 

  

Model

Index

Number in

Model

Adjusted

R-Square
R-Square BIC MSE

Root

MSE
Variables in Model

1 8 0.7667 0.7793 194.5203 3.399339 1.84373 x1 x2 x4 x6 x10 x11 x12 x13

2 9 0.7665 0.7807 195.8791 3.402179 1.8445 x1 x2 x3 x6 x8 x10 x11 x12 x13

3 9 0.7665 0.7807 195.8828 3.40228 1.844527 x1 x2 x3 x6 x7 x10 x11 x12 x13

4 9 0.7660 0.7802 196.1549 3.409542 1.846494 x1 x2 x4 x6 x8 x10 x11 x12 x13

5 9 0.7660 0.7802 196.1574 3.409609 1.846513 x1 x2 x4 x6 x7 x10 x11 x12 x13

6 10 0.7658 0.7816 197.5366 3.412557 1.847311 x1 x2 x3 x4 x6 x8 x10 x11 x12 x13

7 10 0.7658 0.7816 197.5398 3.412645 1.847335 x1 x2 x3 x4 x6 x7 x10 x11 x12 x13

8 8 0.7658 0.7784 195.0350 3.412836 1.847386 x1 x2 x4 x7 x10 x11 x12 x13

9 6 0.7658 0.7753 192.6241 3.412864 1.847394 x2 x3 x6 x10 x11 x13

10 8 0.7658 0.7784 195.0363 3.412869 1.847395 x1 x2 x4 x8 x10 x11 x12 x13
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Appendix K –  

SAS Model Summary for Top Model in Best Subsets Selection Output 

 

 
 

 

 

 

 

  

Number of Observations Read149

Number of Observations Used149

Source DF

Sum of

Squares

Mean

Square F Value Pr > F

Model 8 1680.50997 210.0637463 61.80 0.0000

Error 140 475.9074329 3.399338807

Corrected Total 148 2156.417403

Root MSE 1.84373 R-Square 0.7793

Dependent Mean 5.37875 Adj R-Sq 0.7667

Coeff Var 34.27806

Variable DF

Parameter

Estimate

Standard

Error t Value Pr > |t|

Standardized

Estimate Tolerance

Variance

Inflation

Intercept 1 -0.028913 1.281478984 -0.02 0.9820 0 . 0 -2.5624657 2.504639844

x1 1 0.7295787 0.28522575 2.56 0.0116 0.138625357 0.53671421 1.863189 0.16567206 1.293485322

x2 1 -0.001643 0.000804974 -2.04 0.0431 -0.35893115 0.05098386 19.61405 -0.0032346 -5.1678E-05

x4 1 0.1727556 0.048509558 3.56 0.0005 0.683276918 0.04282307 23.3519 0.07684962 0.268661621

x6 1 0.0356313 0.024913505 1.43 0.1549 0.137944051 0.16945315 5.901336 -0.013624 0.084886651

x10 1 0.1632373 0.116560034 1.40 0.1636 0.06088545 0.834015 1.199019 -0.0672082 0.393682713

x11 1 -2.090807 0.295144807 -7.08 0.0000 -0.32232005 0.76145546 1.313274 -2.674324 -1.50728972

x12 1 -0.273788 0.187251121 -1.46 0.1459 -0.06945937 0.698524 1.43159 -0.643994 0.096417083

x13 1 0.3917387 0.066730133 5.87 0.0000 0.379143129 0.37792385 2.646036 0.25980968 0.523667789

Durbin-

Watson D 1.106

Model: Linear_Regression_Model

Dependent Variable: y 

Analysis of Variance

Parameter Estimates

95% Confidence Limits
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Appendix L –  

Intellectus Model Summary Top Model in Best Subsets Selection Output 

 

Variance Inflation Factors for X1_MEC_WRKDAYS, X2_Total_MEC_SITE_Hrs, 

X4_of_UXOTECH, X6_of_VEGTECH, X10_SCRAPLBS, X11_SLOPE, X12_VEGDEN, 

and X13_of_VEGACRE_Cleared 

Variable VIF 

X1_MEC_WRKDAYS 1.86 

X2_Total_MEC_SITE_Hrs 19.61 

X4_of_UXOTECH 23.35 

X6_of_VEGTECH 5.90 

X10_SCRAPLBS 1.20 

X11_SLOPE 1.31 

X12_VEGDEN 1.43 

X13_of_VEGACRE_Cleared 2.65 

 

Results for Linear Regression with X1_MEC_WRKDAYS, X2_Total_MEC_SITE_Hrs, 

X4_of_UXOTECH, X6_of_VEGTECH, X10_SCRAPLBS, X11_SLOPE, X12_VEGDEN, 

and X13_of_VEGACRE_Cleared predicting Y_of_SURFACRE_Cleared 

Variable B SE 95% CI β t p 

(Intercept) -0.03 1.28 [-2.56, 2.50] 0.00 -0.02 .982 

X1_MEC_WRKDAYS 0.73 0.29 [0.17, 1.29] 0.14 2.56 .012 

X2_Total_MEC_SITE_Hrs -0.00 0.00 [-0.00, -0.00] -0.36 -2.04 .043 

X4_of_UXOTECH 0.17 0.05 [0.08, 0.27] 0.68 3.56 < .001 

X6_of_VEGTECH 0.04 0.02 [-0.01, 0.08] 0.14 1.43 .155 

X10_SCRAPLBS 0.16 0.12 [-0.07, 0.39] 0.06 1.40 .164 

X11_SLOPE -2.09 0.30 [-2.67, -1.51] -0.32 -7.08 < .001 

X12_VEGDEN -0.27 0.19 [-0.64, 0.10] -0.07 -1.46 .146 

X13_of_VEGACRE_Cleared 0.39 0.07 [0.26, 0.52] 0.38 5.87 < .001 

Note. Results: F(8,140) = 61.80, p < .001, R2 = 0.78 

Unstandardized Regression Equation: Y_of_SURFACRE_Cleared = -0.03 + 
0.73*X1_MEC_WRKDAYS - 0.00*X2_Total_MEC_SITE_Hrs + 0.17*X4_of_UXOTECH + 

0.04*X6_of_VEGTECH + 0.16*X10_SCRAPLBS - 2.09*X11_SLOPE - 0.27*X12_VEGDEN + 

0.39*X13_of_VEGACRE_Cleared 
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Appendix M –  

SAS Model Summary for Final Model 

 

 
 

 

  

Number of Observations Read 149

Number of Observations Used 149

Number of Effects 8

Number of Parameters 8

Source DF

Sum of

Squares

Mean

Square F Value Pr > F

Model 7 1637.397374 233.9139106 63.55 0.0000

Error 141 519.0200291 3.680993114

Corrected Total 148 2156.417403

Root MSE 1.91859144

R-Square 0.759313745

Adj R-Sq 0.747364782

AIC 352.951429

AICC 354.2463931

SBC 225.9829995

ASE 3.4833559

Parameter DF Estimate

Standardized

Estimate

Standard

Error t Value Pr > |t| Tolerance

Variance

Inflation

Intercept 1 1.699921016 0 1.234123459 1.38 0.1706 . 0 -0.7398565 4.139699

x1 1 0.376983385 0.071629636 0.278351381 1.35 0.1778 0.6102452 1.638686 -0.1732982 0.927265

x2 1 0.000995143 0.217379234 0.000327671 3.04 0.0028 0.3331889 3.001301 0.00034736 0.001643

x6 1 0.078478962 0.303825629 0.022701479 3.46 0.0007 0.2209945 4.524999 0.03359969 0.123358

x10 1 0.172528675 0.06435103 0.121262389 1.42 0.1570 0.8344331 1.198418 -0.0671988 0.412256

x11 1 -1.902272454 -0.293255476 0.302147587 -6.30 0.0000 0.7867687 1.271022 -2.4995975 -1.30495

x12 1 -0.425569353 -0.107965764 0.189739793 -2.24 0.0265 0.7366885 1.357426 -0.8006719 -0.05047

x13 1 0.384604576 0.372238358 0.069408311 5.54 0.0000 0.3782647 2.643651 0.2473891 0.52182

Durbin-

Watson D 1.043

Analysis of Variance

Parameter Estimates

95% Confidence Limits

Dimensions

Model: Linear_Regression_Model

Dependent Variable: y 
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Appendix N –  

Intellectus Model Summary for Final Model 

 

Variance Inflation Factors for X1_MEC_WRKDAYS, X2_Total_MEC_SITE_Hrs, 

X6_of_VEGTECH, X10_SCRAPLBS, X11_SLOPE, X12_VEGDEN, and 

X13_of_VEGACRE_Cleared 

Variable VIF 

X1_MEC_WRKDAYS 1.64 

X2_Total_MEC_SITE_Hrs 3.00 

X6_of_VEGTECH 4.52 

X10_SCRAPLBS 1.20 

X11_SLOPE 1.27 

X12_VEGDEN 1.36 

X13_of_VEGACRE_Cleared 2.64 

 

Results for Linear Regression with X1_MEC_WRKDAYS, X2_Total_MEC_SITE_Hrs, 

X6_of_VEGTECH, X10_SCRAPLBS, X11_SLOPE, X12_VEGDEN, and 

X13_of_VEGACRE_Cleared predicting Y_of_SURFACRE_Cleared 

Variable B SE 95% CI β t p 

(Intercept) 1.70 1.23 [-0.74, 4.14] 0.00 1.38 .171 

X1_MEC_WRKDAYS 0.38 0.28 [-0.17, 0.93] 0.07 1.35 .178 

X2_Total_MEC_SITE_Hrs 0.00 0.00 [0.00, 0.00] 0.22 3.04 .003 

X6_of_VEGTECH 0.08 0.02 [0.03, 0.12] 0.30 3.46 < .001 

X10_SCRAPLBS 0.17 0.12 [-0.07, 0.41] 0.06 1.42 .157 

X11_SLOPE -1.90 0.30 [-2.50, -1.30] -0.29 -6.30 < .001 

X12_VEGDEN -0.43 0.19 [-0.80, -0.05] -0.11 -2.24 .026 

X13_of_VEGACRE_Cleared 0.38 0.07 [0.25, 0.52] 0.37 5.54 < .001 

Note. Results: F(7,141) = 63.55, p < .001, R2 = 0.76 

Unstandardized Regression Equation: Y_of_SURFACRE_Cleared = 1.70 + 

0.38*X1_MEC_WRKDAYS + 0.00*X2_Total_MEC_SITE_Hrs + 

0.08*X6_of_VEGTECH + 0.17*X10_SCRAPLBS - 1.90*X11_SLOPE - 

0.43*X12_VEGDEN + 0.38*X13_of_VEGACRE_Cleared 
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Appendix O –  

SAS Model Summary for Model with Full Set Predictor Variables 

 

 
 

 

 

  

Number of Observations Read149

Number of Observations Used149

Sum of Mean

Squares Square

Model 13 1687.127915 129.77907 37.33 0

Error 135 469.2894878 3.4762184

Corrected Total 148 2156.417403

Root MSE 1.86446 R-Square 0.7824

Dependent Mean 5.37875 Adj R-Sq 0.7614

Coeff Var 34.66351

Parameter Standard Standardized Variance

Estimate Error Estimate Inflation

Intercept 1 -0.01853178 1.827361549 -0.01 0.9919 0 . 0 -3.63249 3.595427

x1 1 0.752955761 0.447055923 1.68 0.0944 0.143067173 0.223414 4.476005 -0.13118 1.637095

x2 1 -0.00209103 0.000973061 -2.15 0.0334 -0.45676492 0.03568 28.02664 -0.00402 -0.00017

x3 1 0.003266334 0.00360494 0.91 0.3665 0.457164653 0.006332 157.9232 -0.00386 0.010396

x4 1 0.083759416 0.111576718 0.75 0.4541 0.331282283 0.008277 120.8098 -0.1369 0.304424

x5 1 -0.05580262 0.205563775 -0.27 0.7865 -0.02120231 0.264255 3.784219 -0.46234 0.350739

x6 1 0.125572724 0.11872953 1.06 0.2921 0.486145724 0.00763 131.0647 -0.10924 0.360383

x7 1 0.573769771 0.907013867 0.63 0.5281 101.8578924 6.22E-08 16083022 -1.22002 2.367564

x8 1 -0.84678532 1.333049431 -0.64 0.5264 -102.219254 6.23E-08 16063384 -3.48315 1.789576

x9 1 -0.00597268 0.239032919 -0.02 0.9801 -0.00222379 0.203521 4.91351 -0.47871 0.466761

x10 1 0.177832355 0.235966286 0.75 0.4524 0.066329236 0.208107 4.805229 -0.28884 0.644501

x11 1 -2.09551886 0.30240868 -6.93 0 -0.32304646 0.741718 1.348221 -2.69359 -1.49745

x12 1 -0.20770919 0.263930199 -0.79 0.4327 -0.052695245 0.359554 2.78122 -0.72968 0.314264

x13 1 0.392794492 0.067672268 5.80 0.0000 0.380164943 0.375785 2.661096 0.25896 0.526629

Durbin-

Watson D 1.111

Parameter Estimates

Variable DF t Value Pr > |t| Tolerance

95% Confidence 

Limits

Model: Linear_Regression_Model

Dependent Variable: y 

Analysis of Variance

Source DF F Value Pr > F
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Appendix P –  

Intellectus Model Summary for Model with All Predictor Variables 

 

Variance Inflation Factors for X1_MEC_WRKDAYS, X2_Total_MEC_SITE_Hrs, 

X3_TRUE_MECHRS, X4_of_UXOTECH, X5_VEG_WRKDAYS, X6_of_VEGTECH, 

X7_TOTAL_VEG_SITE_HRS, X8_TRUE_VEGHRS, 

X9_OFMEC_MPPEH_RRD_MD_ITEMS, X10_SCRAPLBS, X11_SLOPE, 

X12_VEGDEN, and X13_of_VEGACRE_Cleared 

Variable VIF 

X1_MEC_WRKDAYS 4.48 

X2_Total_MEC_SITE_Hrs 28.03 

X3_TRUE_MECHRS 157.92 

X4_of_UXOTECH 120.81 

X5_VEG_WRKDAYS 3.78 

X6_of_VEGTECH 131.06 

X7_TOTAL_VEG_SITE_HRS 2 × 107 

X8_TRUE_VEGHRS 2 × 107 

X9_OFMEC_MPPEH_RRD_MD_ITEMS 4.91 

X10_SCRAPLBS 4.81 

X11_SLOPE 1.35 

X12_VEGDEN 2.78 

X13_of_VEGACRE_Cleared 2.66 

 

Results for Linear Regression with s 

Variable B SE 95% CI β t p 

(Intercept) -0.02 1.83 [-3.63, 3.60] 0.00 -0.01 .992 

X1_MEC_WRKDAYS 0.75 0.45 [-0.13, 1.64] 0.14 1.68 .094 

X2_Total_MEC_SITE_Hrs -0.00 0.00 [-0.00, -0.00] -0.46 -2.15 .033 

X3_TRUE_MECHRS 0.00 0.00 [-0.00, 0.01] 0.46 0.91 .367 

X4_of_UXOTECH 0.08 0.11 [-0.14, 0.30] 0.33 0.75 .454 

X5_VEG_WRKDAYS -0.06 0.21 [-0.46, 0.35] -0.02 -0.27 .786 

X6_of_VEGTECH 0.13 0.12 [-0.11, 0.36] 0.49 1.06 .292 

X7_TOTAL_VEG_SITE_HRS 0.57 0.91 [-1.22, 2.37] 101.86 0.63 .528 
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Variable B SE 95% CI β t p 

X8_TRUE_VEGHRS -0.85 1.33 [-3.48, 1.79] -102.22 -0.64 .526 

X9_OFMEC_MPPEH_RRD_MD_ITEMS -0.01 0.24 [-0.48, 0.47] -0.00 -0.02 .980 

X10_SCRAPLBS 0.18 0.24 [-0.29, 0.64] 0.07 0.75 .452 

X11_SLOPE -2.10 0.30 [-2.69, -1.50] -0.32 -6.93 < .001 

X12_VEGDEN -0.21 0.26 [-0.73, 0.31] -0.05 -0.79 .433 

X13_of_VEGACRE_Cleared 0.39 0.07 [0.26, 0.53] 0.38 5.80 < .001 

Note. Results: F(13,135) = 37.33, p < .001, R2 = 0.78 

Unstandardized Regression Equation: Y_of_SURFACRE_Cleared = -0.02 + 

0.75*X1_MEC_WRKDAYS - 0.00*X2_Total_MEC_SITE_Hrs + 0.00*X3_TRUE_MECHRS + 

0.08*X4_of_UXOTECH - 0.06*X5_VEG_WRKDAYS + 0.13*X6_of_VEGTECH + 

0.57*X7_TOTAL_VEG_SITE_HRS - 0.85*X8_TRUE_VEGHRS - 

0.01*X9_OFMEC_MPPEH_RRD_MD_ITEMS + 0.18*X10_SCRAPLBS - 2.10*X11_SLOPE - 

0.21*X12_VEGDEN + 0.39*X13_of_VEGACRE_Cleared 

 

 

 


